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An Empirical Test of New Forecasting Methods
‘Derived from a Theory of Intelligence:
The Prediction of Conflict
in Latin America

PAUL J. WERBOS anp JIM TITUS

Abstract—The “compromise” method is a new computer-based
forecasting tool, available within the conversational CS package on
the MIT Maltics. Like regression (least squares) or new forms of
Box—Jenkins metheds, it estimates the parameters of a multivariate
dynamic model and may be used for causal analysis or policy impact
analysis. Unlike those maximum-likelihood methods, it does not
assume that errors are “white noise,” random and normal. It follows
the newer robust philosophy of trying to minimize estimation errors
on the assumption that noise will be inextricably dirty. In the case of
“strong” dynamic models—models which predict that changes in
present variable values lead to comparable changes in future variable
values—it may reduce parameter errors by an order of magnitude.
Forecasting errors will alsc be reduced, although the degree of
reduction depends on how much randemness exists in the process.
When we used the compromise method according to the new “bias”
procedure, in order to reestimate the J-5 model (a nonlinear multi-
equation model used by the Department of Defenise in long-range
forecasting), forecasting errors were reduced by between 0 and 45
percent (with a median of about 20 percent) across different var-
iables, as compared with regression. With simultaneous-equation

" econometric models, it has reduced them by 50 percent. The pro-
cedure has been documented for use by nonprogrammers [1]; it in-
corporates a new quasi-Newtonian methed which can handle many
parameters. i

1. Basic RESULTS

N 1974, we suggested that a new class of robust methods

could outperform regression and Box-Jenkins methods in
long-range forecasting [2]. These robust methods did quite
well in preliminary tests, but until January 1978 they had
never been tested in their ability to estimate multiequation
models. These methods share a common philosophy with
the better known robust methods of Mosteller, Tukey [3],
and others: instead of assuming that a model is perfectly
“true” in some form, as in conventional maximum-
likelihood estimation, where one maximizes an abstract
“probability of truth,” we try to estimate the parameters of a
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model in such a way that the model will do a workable job of
forecasting despite the “dirty noise,” the imperfect
specification, and the limited coverage of any realistic model
in the social sciences. According to maximum-likelihood
theory, one can deduce the “proper method” by elegant
abstract reasoning purely from first principles; however, the
robust philosophy emphasizes the need for empirical tests—
like this one--and the need for an operations-research style
of thinking, even when one is carrying out careful math-
ematical analysis.

In our initial test, we have compared regression against
the most up-to-date version of the robust method, the “bias”
method formulated in October 1977. We used both methods
to estimate the equations of the revised J-5 model, a model
developed by CACI [4], [5] to predict socioeconomic and
conflict variables worldwide; forms of this model based on
regression are now being used by the Defense Intelligence
Agency, JCS/J-5 and others, to provide long-range forecasts
which guide global strategic planning, We found that the
bias version ol the model outperformed the regression

. version across virtually all variables for essentially all time

intervals of prediction. The median improvement, across
variables, was a reduction of roughly 20 percent in the size of
errors. The improvement varied over a fairly uniform range,
from one case with no improvement (population) to another
with a 45 percent cut in error (gross domestic product
(GDP)). With population, the bias forecasts seem to be
worse, but this is probably a numerical artifact (see the last
paragraph of Section I1II-E). All of this is shown in Table I,
where the column for regression “Reg.” may be compared
with the column for the new bias method “Bias (actual)”.
The rest of this report deals with the interpretation and
analysis of Tables I-IV. More recent results have shown
an even stronger improvement over regression (median
50 percent).

In this test, we studied the ten Latin American countries
for which we could find highly reliable data from 1950 to
1967: Argentina, Brazil, Chile, Columbia, Ecuador,
Guatemala, Honduras, Mexico, Peru, and Venezuela. We
focused our attention on the “core” of the J-5 model, the part
which predicts the following variables: population, gross
investment, domestic government spending, defense expen-
diture, GDP, consumption, imports, exports, tension ratio,
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TABLE 1
MEAN PERCENTAGE FORECAST ERRORS
Reg, RPias w=1 w=1 Pure Bias Pure
{actual) (paf.) (actual) (estim,) (estim,)
Population 1.391 2,072 3.850 3.850 64314 4667 142,370
Investment 20,072 15.874 19,753 19,703 16,863 29,645 24,964
Domestic Gov, 21,128 18,507 204739 20,459 17.192 30,371 172.4517
Defense 31,807 264696 27,458 324304 28,875 28,480 29.720
GDP 11.934 6o413 8,878 9.624 9.547 15,433 29.290
Consumption 9.914 6,064 54571 6,895 8,943 11,670 22,228
Imports 31‘-9;‘12 21,135 31.482 32, 580 20,203 25,196 b2.437
Exports 22,954 21.934 20,137 21,258 23,147 27.294 524495
Tension Ratio 14,256 12,366 11,081 14453 13.047 12,009 12.520

Average across country-years of error as a percentage of actual.

TABLE 11 TABLE 1V :
t RATIOS FOR MEAN PERCENTAGE FORECAST ERRORS t RATIOS FOR MEAN ABSOLUTE VALUE OF FORECAST ERRORS
(actisl)  (pof) ' (achiel) (ostim.) (eobime) (actusl) (bt (actisl)  (osiim) (hors.)
Population ~4,540 -6.601 -6.601 -9.532 -4,908 -3,015 Population -3.,406 -3.681 -3.681 -4,326 ~5.897 -6.154
Investment 1,658 0.971 1,239 1,164 ~3,037 -1,232 Investment -0,811 1.187 1,277 -0,861 -1,530 1,148
Domestic Gov, 2.412 3,343 54530 44191 ~4.604 -3,101 Domestic Gov, -1,376 2,104 2,312 0.568 -3.513 -3,656
Defense 2,122 2,002 4,774 1.831 1,496 ~2,60k Defense 1.421 1.822 ~3,953 1.877 1.593 -2.608
GDP 5,367 3,973 4,265 1.886 =2,741 ~3.788 GDP 34240 4e115 4478 0,182 0.896 -2.597
Consumption 4,030 34197 4,025 0,861 ~T.421 -4,5400 Consumption 34536 34551 L.045 0.122 3,251 -3.973
Imports 4,668 0,976 ~1.822 4,686 3173 -3.619 Imports 34137 0.239 ~1.328 34339 2.352 -2.882
Exports 0.889 14544 3,408 -0.054 =2.640 -5.035 Exports 14335 34251 2,977 1.962 ~2,132 =2.417
Tension Ratio 1,999 2.506 ~4.559 1443 1.895 0,370 Tension Ratio 2,192 2,650 -4.217 1.611 2.096 0.603
Turmoil 1.398 0,572 2,260 0,121 0.920 -0.469 Turmoil 0,798  -0.575 Te241 =0.430 0.097 -0.598
Conflict 4.789 2,524 =-0.59% ~1.,984 5,000 ~1.190 Conflict he914 2.976 =0, 144 0.048 4,997 0,076
Coups 0.408 -0.687 1.994 -2.734 ~0.397 -1.061 Coups =-0,.100 -0,886 1¢262 ~1.963 -0.9% -1.350

Tests hypothesis that regression is worse than the given alternative
method for errors cited in Table L.

) TABLE III

AVERAGE OF WEIGHTED PERCENTAGE FORECAST ERRORS
el it v (acbusl) (avbnsd)

Population 14161 34733 34733 1.936 64183
Investment 14,380 14,074 14,021 164352 16,775
Domestic Gov. 16,28t 15,706 15,961 18,256 15,82k
Defense 18,281 154375 18,597 164606 16,602
GDP 10,075 7043 74723 74604 §.862
Consumption 9.495 6,477 6.951 6.826 9,384
Imports 30,414 30,178 ° 30,954 - 19,067 19.298
Exports 280,656 . 204594 26,032 26,475 20,525
Tension Ratio 14.175 11,056 14,381 12,231 12,871
Turmoil 86,936 . 88,054 86,633 87,791 88,116 -
Conflict 280,808 255.447 281,716 215,779 279,642
Coups 80,805 81,585 80,470 79,024 884367

Average across time of “weighted percentage error,” defined as mean
absolute value of error as a percentage of mean value of actual values.

coups, international conflict, and internal turmoil. We fitted -

the J-5 model to the data from 1950 to 1961 without

accounting for later data in any way. Then we used this early.

data, and the model, to generate forecasts only as far as 1967,
the last year for which we had complete data. For the target
years, 1962 to 1967, we compared the forecast values of the
variables against the actual values. (1961 was chosen as the
base year, well in advance, because an empirical data span

Tests hypothesis that regression is worse than the given alternative
method in terms of absolute values of error.

twice the length of the forecast span scemed desirable as a
way of being sure that there would be no complications due
to gross instability in parameter values.) These forecasts—
averaging only three and a half time periods forward in
time—are a far cry from the many-period long-range fore-
casts with which we have been associated in the past (see
the forecasts of nationalism in [2, ch. VI]; see [6]). Never-
theless, the superiority of the bias model appears fairly
uniform across all target years, even for one-year forecasts.
For this reason, we have chosen to summarize our results in
Tables -1V, which demonstrate the average results across
all countries and target years for each target year studied.
Separate such tables have also been constructed for each
individual target year; these tables have been submitted with
the version of this report filed with the Defense Advanced
Research Projects Agency (DARPA) [1].

Note that the test of performance here is quite different
from the conventional r* test of performance used in most
regression studies. In essence, r* measures the ability of a
model to predict time ¢t + 1 on the basis of actual data from
time t over the same data which are used to fit the model in
the first place. Here, we are testing the ability of the model to
predict several yearsinto the future on the basis of initial real
data; we are testing the fit between actual and predicted
values for a new set of data, to which the model was not
" fitted. Given that the actual application of forecasting models
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hinges on their ability to predict new sets of data——the
future—this test is much more realistic than the usual test.
Also, this test is a more difficult test to pass. A multiple R of
99.5 percent sounds very good in regression. However, such
" an R implies an r? of 99 percent, an error variance 1/100 the
size of the variance of the variable predicted, and a standard
deviation of error equal to 1/10.of the standard deviation of
the variable. In other words, a multiple R of 99.5 percent
implies an actual error size of 10 percent, even when one
predicts only one year into the future; if errors have a
persistent tendency to accumulate, despite the usual correc-
tion procedures, this could imply as much as a 50 percent
error in predicting only five years into the future.

Table I shows essentially what we have said above, that
the bias method “Bias (actual)” outperforms regression to a
substantial degree. (Again, there are other things in this
table, too, which we will explore, item by item, in Section
'TIL.) However, one may ask whether this result could be a
coincidence. Is the difference in errors statistically
significant? For each target variable, and for each method
other than regression, we performed a classical t test for
paired samples (see [7, Section 8-3-c}); the results are shown
in Table I1. With a sample of 60, as in this case, a t ratio of
1.671 or better indicates that regression is worse than the
method we are comparing it against at a 95 percent level of
significance. (In other words, if the two error distributions
were identical, the probability would be 5 percent that
regression would appear to be that much worse as a result of
coincidence.) For most of the 12 target variables, the bias
method passes this test. A t ratio of 3.46 indicates
- significance at a level of 99.95 percent; with 4 of the 12 target
variables—including international conflict—the superiority
of the bias method is substantially greater than this. In brief,
the statistics indicate that we may be confident of the validity
of the general impression we obtain from Table L

II. THE MODEL

Before going on, we should mention a few interesting
substantive results. We did not intend, initially, to look for
~ any “new” substantive explanations of conflict, apart from

what is already implied in the CACI J-5 model Weintended
to focus only on the core of this model, on a set of equations
which are mathematically independent of the rest. However,
the original CACI model was based on a cross section of one
year’s data; with fnany years’ data, and slightly different
definitions of variables, we found that the model did not
hold up very well at all. In 1976 [8] our project noted that the
CACI parameter estimates were not stable over time, over
the United Nations data base then being prepared; however,
here we found that the choice of terms in the model itself was
a problem, over new and more reliable data. Our initial
regressions recorded low predictive power (r?) for all of the
political equations in the model, reaching as low as 0.0016 in
the case of international conflict; while we were willing to -
accept the idea that some prediction is better than none,
0,0016 seemed more like “none” to us, even for a purely
methodological study. Fortunately, however, when we were
searching for data, we had looked at the Mcllroy thesis [9]
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on the value of “strain” as a predictor of conflict, as well asat .
similar findings by Feierabend and others suggesting that
measures of social development were crucial in predicting
conflict. In addition to urbanization data, therefore, we
collected data on the fraction of the population enrolled in
primary education (“per_primary”) as an index of social
development. This turned out to be the single most impor-
tant predictor of international conflict: more education
means less conflict. This result holds up in all versions of the
J-5 model which we estimated. (Note, however, that we had
to treat per primary as an exogenous variable, like
“STRAIN” as it appears in the original equations reported
by CACI; see [9, p. 7, eq. (24)].) In like manner, we added
exports to this equation, largely because a recent report
from the Cross-National Crisis Indicators project (CNCI)
[10] indicates a strong association between different com-
ponents of foreign-policy-behavior-sent. Also, many inde-
pendent variables which seemed important in the CACI
equations had t ratios here of 0.1, —0.08, 0.3, etc.; for this
reason, we had to drop them from the equations or replace
them by similar terms which represented the same concepts
in a more accurate way, with a better ¢ ratio. It was un-
pleasant having to drop average foreign military assistance
from the equations, but with ¢ ratios such as —0.08, there
was not much choice; the variables simply did not seem to
have a measurable effect on Latin American politics. In gen-
eral, terms of substantive importance were kept in the
model, but only if they had ¢ ratios above 0.7. As a result of
these changes, the r? of the regression equations was lifted
up to meaningful levels for our sample of 110 observations
(r* = 6 percent for.conflict, 23 percent for turmoil, 22 per-
cent for coups, and “high”—mostly above 90 percent—for
all others). Furthermore, the degrees of freedom of the
model were reduced in number. These changes were made

- in order to give regression a fair chance. Also, to be honest,

they were made because our theoretical analysis indicates

that the bias method will show greater relative improvement

for models which are already “strong” to begin with. A
strong model is one which tells us that changes in the
present state of the world will lead to significant changes in
the far future. All of these modifications were made during
the regression phase of our analysis, before a single robust
estimation of any kind had been done on any of these
data. The final regression model is shown in Fig. 1. The
robust versions are shown in the appendices of [1].

III. ANALYSIS OF TABLES I-1V

A. Regression Versus Bias for Economic Variables

As economic variables, we include gross investment (I),
domestic government spending (dom), defense expenditure
(defx), GDP, consumption (C), imports (imp), and exports
(tex), all defined in terms of 1973 real dollars. Bias reduces
the average percentage error in predicting every one of these
variables. In one case (exports), the percentage of error is
reduced by only about 5 percent of its original size with
regression (see Table I), but for the others we obtain error
reductions from about 15 to 45 percent. With the exception
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pop(t)=1,02955%pop(t-1);
I1(t)=.069376*%gdp(t-1)+,0685683%1(t-1);
dom(t)=~,001928%gdp(t-1)+,003267*y0p(t)+1.025%dom(t~1);

defx(t)=,792%defx(£-1)~,083*%tml (t~1)+, 441 *rivdex(t)
-.303*rivdex(t~1)+.000515*pop(t)+.000627*gds(t-1);

C(t)=a747%C(t-1)+,009882%por(t)+.19*gdr(t);
imp(t)=.769%imp(t-1)+,0202%gdp(t)-,001843*pop(t);
tex(£)=1.055%tex(t-1)+.095%gdp(t)~, 102%gdp(t-1);
gdp(t)=C(t}+1(t)+dom(t)+defx(t)+tex(t)-imp(t);
adex(t)=,8%adex(t-1)+,2*defx(t);
tr(t)=100%(defx(t)/adex(t));

tml(t)=.312%tm1(£-1)+5,846%cont(t-1)+,237%tr(t)
~16,223+,000002%tr(t)*gap(t);

conf(t)=1.126-4.512*((gdp(t)/pop(t))-(gdp(t~1)/pop(t=1)))
_75.339*per_primary(t)+.000195*tex(t)-.OOO}]Z*imp(t—1);

coup(t)=,003673%tml (t)-,002609%tml(t-1)+151*conf(t)
-.03t*conf(t-1)+,0022%gap(t)*tmL(t) pop(t)
+.059*gdp(t)/pop(t);

Fig. 1. Model as estimated by regression (note that units are important
in interpreting this model; economic figures are in millions of dollars,
population is in thousands, per-primary is percentage enrollment
divided by 1000, and conflict variables are about as big as their means).

of exports, the error reduction is not only large but statist-
ically significant; the ¢ ratios are greater than the 95 percent
level of 1.671, except for investment, which is close enough at
1.658 (see Table II). Better prediction of exports would
probably require a new model, a model which accounts for
economic conditions outside the exporting country itself;
dyadic modeling of that sort might require additions to our
computer package, however, depending on the type of
models being considered. The biggest and most significant
reduction in error is for the most important single economic
variable, GDP.

In our detailed discussion of methods, we will emphasize
that bias yields the biggest improvements over regression in
the case of strong models, models in which errors in
parameter estimation would lead to cumulative error
in long-range forecasting. The economic variables are the
main source of strength in the J-5 model as a whole. Thus we
would expect that bias leads to a direct improvement in the
economic forecasts; one would expect an indirect improve-
ment in the forecasts of noneconomic variables, especially
into the far future, only because the quality of those forecasts
depends on the economic forecasts which provide the key
independent variables. It should be no surprise, therefore,
that the economic forecasts seem to be the area of greatest
improvement with bias. In order to improve the quality of
conflict forecasts, we would have to improve the J-5 conflict
equations very carefully, probably by adding more and
better socioeconomic data; however, it will be equally
important to improve and strengthen the social and eco-
nomic equations which are used to predict the independent
variables of any new conflict equation. With stronger
models of this kind, we expect that the bias method will have
even greater advantages over regression than it does here.

The discussion above is based on Tables I and II. In
Tables III and IV, however, the improvement is not so clear
cut. If we look at the absolute value of error, as tested by
Table IV, we obtain three variables with significant
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improvement, two improvements of borderline significance,
one worsening of borderline significance, and one
insignificant worsening. (By borderline, we mean a ¢ ratio
between 1 and 1.6.) Why the difference?

Strictly speaking, the ¢ tests of Table Il are more valid than
the ttestsin Table IV. In both cases, we are trying to evaluate
the mean and standard error of a variable called “improve-
ment,” which equals error for regression minus error for the
bias method. The classical ¢ test assumes that this variable is

‘normally distributed, more or less. In the case of percentage

errors, this is generally reasonable. However, in the case of
absolute errors, there is “heteroscedasticity;” in other words,
the largest nations (Brazil and Mexico) dominate the
analysis. This means that the effective sample size is much
smaller-and that the variance of the variable appears larger
than it really is. With a smaller effective sample size, we
obtain less significant results, even when the true differences
are equally large; furthermore, the larger standard errors
lead to larger random errors in our measurement of model
improvement. A simple paired comparison like thlS is
extremely susceptible to heteroscedasticity.

Tables III and IV were initially constructed to indicate
whether heteroscedasticity might be a problem with the
original model estimation. Both with regression and bias, we
followed the conventional practice of minimizing error
across all nations, without adjusting for the relative sizes of
the nations; this is justifiable on grounds that the bigger
nations are more important and do represent a bigger
sample in some ways. Tables [T and IV are subject to more
random error than Tables I and 11 because of heteroscedasti-
city, but they do provide some indication of how well the
model performs on big nations, the nations to which the
model was fit most closely. If we compare Tables I and III,
we can see that the bias method was not thrown off by
heteroscedasticity; the percentage errors across all nations
(Table I) are just as good, on the whole, as the errors in the
big nations (Table III). Indeed, they even seem slightly
better, as our analysis of Table IV has indicated. However,
the difference is not statistically significant; it is probably
due to random noise affecting Table IT1, which we have just
discussed. One would certainly expect a model to do just as
well on the nations it pays more attention to as on those it
does not pay as much attention to, if there were enough data
to evaluate both categories of performance accurately.
There is a corollary to this argument: with more data, we
would expect that Table IIT would indicate uniform large
improvements with the bias method, just as Tables I and 11
do now.

B. Regression Versus Bias for Noneconomic Variables

Regression does seem to outperform bias for one of the
variables in Table I, population. But there is excellent reason
to believe that this is a numerical artifact, due to the low level
of error with all methods in predicting population (see the
last paragraph of Section I1I-E. for a detailed analysis of this
point).

For two of the variables, tension ratio and international
conflict, bias did significantly better in all of the tables.
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However, the errors in predicting international conflict were
‘very large in Table III; in Table I, they were so large that
they could not even be printed on the table. The reason for
this is not that conflict is totally inscrutable. After all, the ¢
tests do indicate substantial improvement—implying some
knowledge—in going from regression to bias predictions of
. conflict both in Table II and in Table IV. The unpleasant
fact, in the real world, is that we must make do with the best
conflict indicators we can obtain, however much noise there
is in observing the process; improvements in our prediction
capabilities (here, 25 percent reduction in error) are impor-
tant, even if they do not lead us in one step tonirvana. More
advanced models of conflict, based on better data, will be
needed to reduce these errors much further.
Nevertheless, the actual errors are not nearly so bad as
these 200 percent figures indicate. For Tables I and II,
percentage error was defined as

| predicted minus actual |
actual value

Because the actual value was sometimes zero, we added
10713 to the “actual” to prevent numerical catastrophe. In
the cases of conflict, coup, and turmoil, the scores were often
zero; for coups and conflict, they were sometimes zero for
the whole of Latin America. When we computed simple
percentage error, then the score was entirely dominated by
the false-alarm rate, the rate of predicting coup or turmoil
when no coups or turmoil took place. A t test comparing
false-alarm rates, of course, is just as valid as a t test
comparing ordinary percentage error. In terms of the false-
alarm rate, bias was uniformly superior to regression over all
three conflict variables subject to this problem: with interna-
tional conflict the superiority of bias was highly significant,
with turmoil it reached only a borderline significance, and
with coups it was insignificant. The ¢ ratios in Table II
correspond exactly to the numbers in Table L.

Table IV gives us an evaluation of error in absolute terms
for cases where it is illogical to compute error.as a percent-
age of the actual value (again, for coups, turmoil, and
conflict; for the tension ratio, the two tables, II and IV, are
essentially the same). More precisely, it compares the mean
absolute size of errors for different methods across all years
and nations. In effect, it tells us how well the methods did in
terms of average error in predicting coups, while Tables I
and II tell us how bad the false-alarm rate is. The average
error in predicting international conflict is better with the
bias method by a very significant margin. However, with
coups and turmoil, bias actually-did worse. Still, this differ-
ence was not statistically significant, and indeed, in the case
of coups, it was virtually nil. Realistically,.in the case of
coups, an entropy measure of error would be more appro- -
priate since the “expected number of coups” may be better
interpreted as “probability of coup;” however, such elab-
orate measures of error, will have to await future studies.

With the one conflict variable that ne\/er got to be zero,
the tension ratio, the bias method did significantly better
than regression by the test of absolute error (Table IV), just
as it did by the test of percentage error (Table II).
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Table III was put together to try to do for Table IV what
Table I does for Table II: to give us some feeling for the
magnitude of differences in error. However, the correspon-
dence between Tables III and 1V is not as exact. Instead of
printing out the mean absolute value of errors, which may
mean very little to most people, we created a percentage by
dividing the absolute error in each year by the mean value of
the target variable in that year; this kind of percentage was
calculated for each target year and then averaged up across
all target years to produce Table II1. For all of the variables
except conflict, coup, and turmoil, the table can be thought

~ of simply as showing “percentage error, weighted by the size

of the nation predicted.” With turmoil, the table provides a
balanced evaluation of performance, but the numbers are all
somewhat inflated because in 1964, when the actual level of
turmoil was temporarily very low across all of Latin Amer-
ica and the predictions were moderate in size, the errors
looked huge as a percentage of that low mean; nevertheless,
the numbers are still comparable, and we can see that the
choice of method has little impact in predicting turmoil. For
the other two variables, coup and international conflict, the
actual mean value was sometimes zero across Latin Amer-
ica; in these years, we calculated the percentage on the basis
of a fictitious mean of 1, which is very large. Thus the figures
for coups and conflict do not represent average error in
Table 11, but rather average errors across cases where there
is no false alarm. Note that predictions of international
conflict are much better for the bias method in these cases.
From Table II, we also know that the false-alarm rate is
much less with the bias method; therefore, the forecasts of
international conflict are substantially better in all respects

~ than those of regression. In the case of coups, the difference

in prediction quality is negligible in these cases. Again, the
numbers themselves may be inflated, but the comparison
between methods remains meaningful. Once again, the t
ratios in Table IV do not depend in any way on percentage
calculations; they are definitely more meaningful than the
percentages in Table 111

In summary, bias did substantially and significantly better
than regression in predicting tension ratios and interna-
tional conflict, by any measure. In predicting coups and
turmoil, the differences between the two methods were both
small and statistically insignificant. Bias seems to reduce the
false-alarm rate for internal turmoil, but this result is of
borderline significance. The other differences between
methods are both insignificant and equivocal in this case.

C. Errors in Parameter Estimates

Tables I-1V indicate a significant reduction in forecasting
errors when we change over from regression to the bias
method. However, forecasting error is not the only criterion
for judging the value of a model. Models have two major
roles to play in public decisionmaking: 1) forecasting the
background conditions which policymakers must antic-
ipate; 2) describing “how the world works,” so that a
policymaker can assess the changes in future conditions
which would result from changes in present policy. The first
of these applications depends on the quality of forecasts as
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such. However, the second application depends on the
quality of the parameters. 1f one knows exactly the probability
of alternative outcomes, one can use decision analysis to
make a correct rational decision; even if one cannot forecast
exactly what will happen, a correct statistical model will
provide correct - probabilities. Correct model parameters
imply correct probabilities, not exact predictions of the
future, (Needless to say, however, no probabilities are
completely correct until the correct statistical estimates have
also been combined with human judgment and any other
source of information which goes beyond the historical
time-series data; the discussion here is focused on the ques-
tion of how to correctly assess what we find in the statistics.)

Unfortunately, it is very difficult to measure errors in
parameter estimation. One has to know the “true” values of
parameters before one can measure the errors in parameter
estimation; this is possible, in general, only for known
simulated processes, not for the real world. Still, in Section
III-D we will argue that bias leads to a moderate reduction
in forecasting errors; because of a reduction in parameter
errors which may be something like an order of magnitude,
for crucial parameters. Given that we have observed the
predicted moderate reduction in forecasting errors, it seems
likely that parameter errors—if we could measure them——
have been reduced much more. In our past work, on studies
of simulated data (see [2, ch. IV]), we did find that the
improvements in parameter estimates were much more
dramatic than the improvements in forecasting errors as
such.

D. Alternative Methods Tested : Background

In the column headings of Tables I-1V, “Reg.” refers to
regression, and “Bias(actual)” is the specific form of robust
estimation which we now advocate. However, we have yetto
define precisely what the bias method entails.

The bias method is a specificstrategy for making use of the
more generalized method which we have called the compro-
mise method [6], [2]. All of the other methods cited in Tables
I-1V, except regression, are different strategies for making
use of the compromise method; however, these other
strategies are closely related to more conventional methods,
such as the full-information maximum-likelihood method,
and will provide some evidence of the superiority of bias
over those methods.

The compromise method has been described at great
length in the other contexts cited above; for now; we will
merely summarize the method briefly to help the reader
make sense of Tables I-IV. We can picture the compromise
method as a three-step process.

1) For each equation of your model, regress the depen-
dent variable on the independent variables in the conven-
tional manner. . :

2) Use the resulting model to “filter” those variables
which the model tries to predict. Filtering means, estimating
the true underlying values of the variables by use of the
equation - .

X, ={1-w)X;,+wX,
(Note that X, refers to the measured data for variable
number i, X, refers to the estimated “true” value of the
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variable, and X refers to the predicted value of the variable
for the current time period, based on applying the current
Jorm of the model to the estimated true valuesin the previous
time period. w; is not another variable, but a “ Itering
constant” or “weight,” to bediscussed below. w; was referred
to as r in our earlier papets.)

3) Replace each variable by its filtered version, where
possible, in its appearances as an independent variable in the
model equations. Then go back to step 1) and redo the
regressions for the new versions of the variables. For
example, if I (investment) appears both as a dependent
variable (I(¢)) and as an independent variable (I(t — 1)), we
use the filtered version of I to give us a new version of
I(t — 1)

This process s circular, of course; after we redo the model,
we have to recalculate the predictions X » recalculate the
filtered values X;, and then go back and redo the model
again. Actually, the predicted and estimated values must be
calculated forward in time, starting from estimates either at
time ¢ = 1, the first actual observation, or at ¢t = 0, the
previous time-period. For long time series, we would recom-
mend the following order of calculation: X(t = 0), X (t=1),
X(e=1),X(t=2),£¢t= 2), -+. Fig. 2 may help to explain
this process. After we redo the regressions, we should then
recalculate the estimates, redo the regressions a third time,
recalculate the estimates a third time, and so on. In principle,
we should continue to go around and around the circle until
our estimates change very little from iteration to iteration.
Unfortunately, step 1) by itself could be very expensive,
because our model may require nonlinear regression; con-
vergence by this method could be very expensive and
possibly unreliable. However, there is an easier way to
proceed, which is mathematically equivalent and more
flexible in other respects. For each set of trial values of the
parameters, we can calculate the predictions and the esti-
mates together and then add up the square errors (or other
loss measure) between the predicted and actual values; we
can use a generalized minimization subroutine to keep
guessing sets of trial values until it is satisfied that it has
minimized error. When the available time series are very
long, we can estimate the values of X {(0) in each nation as
extra parameters of the model; however, when the time
series are shorter, as in the runs reported here, it seems more
appropriate to begin with measured data, with X {1) set to
the measured value X (1). :

Note, by the way, that this procedure will be no different
from regression if there is no variable which appears both as
a dependent variable' and as a (lagged) independent
variable; however, such a situation is impossible, for all
practical purposes, for models capable of yielding long-
range forecasts."

There is one big problem with the compromise method:
we need a specific procedure to tell us how to pick w, the
filtering constant. This is exactly like the situation with ridge
regression, where one has to specify a special parameter k.

The compromise method, in general, has several impor-
tant advantages. First of all, the- filtering equation cited
above is just the Kalman filtering ¢quation, specialized to

‘the simplest kind of process—a process where every variable
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Fig. 2. Order of calculation of X,(t) and X,(t)

is independent of the others and where the parameters of the
system do not change.! This equation is well known in
applied mathematics to yield the best possible estimates of
the true values of the underlying variables; also, to minimjze
error in this fashion is consistent and efficient, even from the
viewpoint of classical maximum-likelihood theory, when it
is appropriate to filter. In this approach, we would pick w to
minimize a maximum-likelihood measure of error; in other
words, we would simply add wto our list of parameters to be
estimated. Filtering is appropriate whenever there is likely
to be transient error—either measurement error, noise, or
imperfect relation between concept and indicator—in the
available data. Certainly, this is always true for political
data! Economists have made many suggestions, some gener-
alized and some ad hoc, for coping with “errorsin data” such
as this; however, it has long been known in applied math-
ematics that filtering is the rigorous solution to the problem
of random measurement noise,? according to maximum-
likelihood theory. The Box-Jenkins and Hibbs methods are
essentially smaller steps in this direction. Note, by the way,
that our simple w filtering equation is similar to the
Mosteller-Busch equation to describe learning in animals,
an equation which has often been tried out in the field of
artificial intelligence.

Second of all, if we set w = 0, the compromise method is
equivalent to what we have called the pure robust method.
In regression, one picks parameters of the model so as to
minimize “error” defined as the gap between actual values
and predicted values which were predicted from actual
values in the immediately preceding time period; in effect,
one minimizes errors in short-range prediction, prediction
from actual values in one period up to the very next period.
In the pure robust method, one does the opposite. One
minimizes the errors in long-range prediction. To evaluate
the errors of one’s model, one first constructs a stream of
predictions (see Fig. 2, but remember that w = 0), starting
from estimated data in the first period without accountingin
any way for the measured data in later periods; one then
compares these predictions for the whole sweep of history

! See [11, p. 361). In the univariate case, the strange matrices there are
just scalar constants, and the formula reduces to ours quite simply.

2 From filtering theory, as discussed in [11], we know that the probabi-
lity of x(¢) conditional upon the estimates at time ¢ —~ 1 should be indepen-
dent of all prior measurements, with a “lag = 1” model and correct
filtering. This implies that overall log probability as given by the model
may be decomposed into the sum of squared error. A given w corresponds
to certain values of the noise parameters which would require this value of
w; thus all parameters may be estimated in this way.
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against the measured data. If we plan to apply a model by
generating long-range trajectories of predictions (as with the
U.S. government use of the CACI J-5 model), then it makes
sense to estimate the model so as to be sure that the
long-term trajectories it would have predicted in the past did
indeed fit these data in the past. In regression, as in other
forms of maximum-likelihood estimation, one argues that-
minimizing the short-run errors will maximize the probabil-
ity that the model is completely “true” (assuming a “flat
prior”). In the pure robust approach, we deny the possibility
that a statistical model will be completely “true;” instead, we
pick the model which does best over past data what we want
it to do over the future: minimize the separation between
long-range trajectories of predicted and actual data. The
pure robust method does have some relation to simple
extrapolation in the univariate case; however, when it is
applied to multiequation models, it is considerably less
trivial than regression to estimate. The pure robust method
is the same as the method used by Gillespie et al. [12] in their
successful studies of arms race models. It is also the method
we used before in predicting national assimilation and
population variables; in that study, the long-range errors
over time intervals averaging about 30 years were reduced
by about half using either regression or Box-Jenkins
methods. Furthermore, it is equivalent to the ad hoc estima-
tion procedure used by Penner and Icerman in forecasting
energy demand and by K. Hubbert in forecasting energy
supply, both discussed in [13]. Those authors seemed disap-
pointed that regression did so poorly by comparison for
their models, but did not appear to realize that their ad hoc
procedures could be generalized and made available as a
standard method for nonmathematicians.

The paragraph above seems to imply that regression is
better for short-range prediction, while the pure robust
method is better for long-range prediction. However, in our
earlier work, we noted that regression will often give even
the wrong signs for small but critical feedback terms, terms
which dominate the long-term dynamics of a system (see the
“rates of assimilation” with regression for the Deutsch-
Solow model, tabulated in [2, ch. VI]). For example, con-
sider the model

population (t + 1) = population (t) + g* population (t)

where g is the growth rate of population. In regression, the
standard error of a term such as g might well be 0.02 or
so—large enough to flip the estimate from +0.01 to —0.01.
The impact of such an error on short-range prediction would
not be very great. Therefore, the random factors and the
standard errors would be large compared with the .
coefficient, and we may expect very small ¢ ratios (circa one)
for normal data samples. Not only did we see this in our
earlier work on national assimilation and population vari-
ables, but we have also seen the same effect at work, even

more strongly, with the J-5 model, although not for the

particular example of population. The ¢ ratios were downin
the range of one or two for many critical predictive factors;
while this may indicate a coefficient significantly different
from zero, it also indicates a very large expected errorin our
parameter estimates. On the other hand, errorsin such akey
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parameter as g, above, would lead to very large cumulative
errors in forecasting; if g = —0.01, the long-range forecasts
would spiral down to zero while the actual values grow.
Because the pure robust method minimizes the gap between
long-range forecasts and actual values, it would minimize
errors of this sort; it will have a much narrower distribution
of possible parameter estimates. In other words, it will be
much more efficient and reliable in estimating critical
parameters. Instead of being better merely at long-range
prediction, it would also be more accurate in estimating the
parameters of the model; one may expect more accurate
short-range forecasts, as well, if this reasoning is correct.
This reasoning assumes, of course, that the parameters do
have “true values” which apply to short-range prediction
and long-range prediction, both, even though the model
itself is not “true” in the strong sense demanded by
maximum-likelihood theory (i.e., that all noise is random
and normal, etc.). The all-pervasive presence of dirty noise is
what makes the robust method more efficient in parameter
estimation.

With w = 0, however, the model predictions may always
deviate so far from actual data that the efficiency of the
model is lost. This seems clear from the theory, but we have

not- documented the effect empirically until now. Late in-

October 1977, we formulated a new bias method—based on
minimizing error variance divided by (1 — |w|)*—which
generalizes the notion of minimizing long-range prediction
errors directly to the case of highly stochastic systems. (This
renders obsolete the 7 and r bias methods discussed before.)
In effect, this method replaces the key assumption of
maximum-likelihood methods, that errors are always
independent and random, by Murphy’s law, that errors will
always find a way to accumulate if they possibly can. The
details are discussed in [1, Appendix A].

In all robust estimations reported here, we have carried
one step further theidea of measuring “error” in a way which
reflects the prospective application. Instead of adding up the
logarithms of error variance across different variables, we
have tried to minimize the sum of “percentage error,”
defined as error variance divided by the variance of the
variable times (1 — |w|)?. In retrospect, our October 1977
analysis also suggests a further step: to add up the square
roots of the terms we added up, in order to arrive at a more
practical loss function. This probably would have avoided
the “fluke” case of population, a variable which was rela-
tively disregarded when we used the square loss function.

Let us emphasize that these new loss functions specified
by the bias method will still encourage us to pick the
ordinary parameters of a model so as to minimize error
variance; however, when w is added as a parameter of the
model, these formulas “bias” us towards a much smaller
value of w than we would have picked if we had been
engaging in maximum-likelihood filtering.

E. Alternative Methods: Conclusions from the Tables

First of all, Tables I-IV make it very clear that our
theoretical reasoning was right even for such “relatively
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deterministic” processes as the one we have studied here.
The pure w = Omethod did break down, in comparison with
the new bias method, and even in comparison with regres-
sion, all across the board.

Second, we have demonstrated the efficiency of the bias
method as a different approach to estimation,not as a form of
filtering which can be understood within the conventional
maximum-likelihood approach; in other words, it is truly a
robust method, in the sense defined by Mosteller and Tukey.
If the bias method were better only becauseit is a back-door
way of generating good filtered estimates of the varnables,
then forecasts based on the estimated data for 1961 ought to
perform better than forecasts based on the actual data.
However, if our theoretical argument were correct, then the
filtering equation ought to be interpreted not as part of the
model, but rather as a device to give us more accurate
parameter estimates. Certainly, in the w = 0 extreme, it is
clear that we would risk very large significant errors if we
used the model on the estimated 1961 data instead of the
actual data; the “estimated true values” are just scaffolding
that we use to help us-in estimating the parameters. The
empirical results in our tables support our theoretical
argument. When the bias method is used on actual data in
1961, it performs substantially better than it does on
estimated data; in other words, the errorsin the columns for
“Bias(actual)” are smaller than those for “Bias(estim.).” The
improvements given by bias do not follow the pattern one
would have expected if bias were merely a watered-down
version of maximum-likelihood filtering. Note that we are
not attacking the value of classical filtering here; indeed, we
have set up our computer package to allow maximum-
likelihood filtering estimation, robust estimation, or a com-
bination of the two. We are exploring the value of our new
bias method for models which may or may not have filtering
equations within the model proper; when such equations are
justified, they are another addition above and beyond the w
filtering equations used by bias. Classical filtering and bias
are not two competing alternatives, but rather two com-
plementary methods; the former can add more sophistica-
tion to one’s model proper, while the latter is strictly an
approach to estimating such models.

Finally, there is one other aspect of filtering which is not
entirely clear from the theory a priori. What should we do
when some of the model equations predict variables at time
t + 1 as a function of other variables also at time t + 1? In
computing our predictions of the former variables, should
we insert the estimated or the predicted values of the latter
variables into the model equations? Maximum-likelihood
theory clearly favors the former strategy (i.e., using the
estimates); it favors “filtering in series.” In series filtering,
one filters each variable in turn immediately after we predict
its value and assess the error in this prediction. On the other
hand, with parallel filtering, one waits and filters all the
variables together after one has processed an entire observa-
tion’s worth of predictions. Consider the following example.
If one variable y(t + 1) can be predicted very well from
x(t + 1), but neither can be predicted well from data at time
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t, then series filtering will involve low errors in predicting y
(ie., it predicts from the observed x(t + 1)), while parallel
filtering will indicate high errors (i.e., the forecast for y(t + 1)
is based on observed data at time t, which is used tomake an
(inaccurate) prediction of x(t + 1)). In this example, the
errors in predicting x(¢ + 1) and in predicting y(t + 1) from
data at time ¢ are clearly highly correlated with each other;
this correlation is what makes the errors with sequential
filtering appear low. In fact, in full-information maximum
likelihood, cross correlations between prediction errors for
different variables would reduce the determinant of the error
matrix and require at least as much “credit” as series filtering
gives to such cases.?

Because of maximum-likelihood considerations, series
filtering has been built into our model-analysis program.
However, the robust philosophy permits an argument in
favor of parallel filtering. When errors are correlated across
variables, this is analogous to our concerns about errors
accumulating across time. The robust approach would
suggest that we look at the “complete trajectory” of fore-
casts, from ¢ to t + 1, across all variables and then assess
error and filter later (this is also the only practical approach
for the implicit models so popular in economics). Therefore,
to see if this idea had any merit at all, we tested out parallel
filtering with w = 1 (see the column labelled “p.f” in Tables
[-IV) to see if it would compare well with w = 1 and series
filtering. Empirically, this method did perform very well in
reducing error in comparison with regression; it did about
as well as bias did. Nevertheless, more research into this
issue 1s needed; it is conceivable that when w is chosen by
bias and when the loss function chosen is based on the
square root of the terms we now use, the advantage of
parallel filtering will disappear.

Note that bias and parallel filtering are independent
strategies for improving on different aspects of w =1
maximum-likelihood estimation. The two strategies are in
no sense competitive. They exploit different effects in order
to get better estimates, and it is a straightforward matter to
use both together. In retrospect, we should have done this.
Recently, the combination of bias and parallel filtering (with
the square-root loss function) has indeed turned out to be
synergistic in estimating a more refined model of the U.S.
economy, based on a model suggested by Kuh, on National
Bureau for Economic Research (NBER) quarterly data.
Median reduction in forecast error is about 50 percent,
and for the better half of the variables, median error reduc-
tion was 75 percent (i.e., a factor of four reduction). Fore-
casts were made for twelve quarters ahead from the base
year. Note, however, that the use of implicit models or of
parallel filtering now requires some programming knowl-
edge on the part of the user, at least for complex models;

? See discussion of FIML in [14]. With the Wishart distribution, esti-
mating the true error covariance matrix as the sample covariance matrix
leaves the determinant which they share as the key factor determining
likelihood. In a simple two-by-two positive symmetric matrix, it is obvious
that big off-diagonal terms—either positive or negative—will reduce the
determinant.
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they require that the user edit the output of our “model
compiler” routine. Also note that the issue of parallel
filtering is irrelevant for models which predict variables at
time ¢ + 1 as a function of previous values of endogeneous
variables and as a function of exogenous variables; such
models have the advantages of parallel filtering automat-
ically built in.

Tables I-1V contain figures for one other method: w = 1
with conventional (series) filtering. Normally, this method is
exactly equivalent to regression. In this case, however, we
did “solve” the equations of the CACI model, algebraically,
so that the model would be “explicit.” This is necessary in
using our computer package as it stands. We actually had to
solve only one equation here, the equation for GDP as a
function of past values of other variables. This led to aslight
perturbation of the economic part of our model, since we did
ask for a comparison between the actual and predicted
values of GDP; however, as Table I makes clear, the errors
with w = 1 are almost identical to those with regression, as
we might expect. The differences, although very small, do
appear to be very significant statistically; this implies a very
tiny improvement in the model, an improvement which is
nevertheless fairly uniform across all prediction targets.
Note that this inclusion of the GDP in the w = 1 model
yields estimates based on assumptions very close to those of
full-information maximum likelihood, the ideal case which
two-stage least squares is supposed to approximate, accord-
ing to Johnston [14]. When representatives of CACI pre-
sented this model at the 1976 meeting of the International
Studies Association, they stated that CACI had published
results based on ordinary least squares instead of two-stage

least squares because they found little or no improvement

when they tried the latter.

Before discussing other aspects of the w = 1 model, we
should mention one other conventional econometric
method which we did not have time to evaluate here: the
Aiken or Cochrane-Orcutt procedure. This procedure,
despite its popularity, is basically just an autoregressive
method. Its results depend only on the matrices of correla-
tions with lags one and two and cannot exploit the higher
order cumulative effects which the bias method exploits. The
Aiken approach often has value, as a way of formulating
what amounts to a more sophisticated model, but to esti-
mate this modelin the conventional manner leaves one open
to all the same hazards as with regression. Even if the “errors
in data” took the form of classical white noise, they would
convert the observed data into a Box-Jenkins process, not
an Aiken model; if the Aiken procedure is too close to
regression even for the case of white noise, then there is little.
basis for expecting noteworthy robustness in handling the
dirtier real-world forms of noise.

There is one big exception to our statement that w = 1
yielded almost the same errors as regression: the case of
population forecasts in our tables, where w = 1 is far worse.
This we have traced to a different estimate of population
growth. Yet mathematically, the estimate with w = 1should
be exactly the same. In going over the computer runs, we
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note that the variance of error with population was ex-
tremely small; very small errors in calculating the derivative
of error with respect to population led our computer
program to shift the estimated growth rate slightly, and
randomly. Because our error assessment formula placed
very little weight at all on predicting population and because
we turned off our convergence routine too soon, this minor
error stayed in place. In effect, we told the computer that
DARPA wants forecasts of political and economic variables,

not population, and the computer just did not pay much .

attention to population. Our convergence routine estimates
the parameters of a model by making step-by-stepimprove-
ments on initial guesses for the values of parameters. It never
replaces a given set of estimates by another set whose overall
performance is inferior; however, the minor improvements
made with w = 1 over regression in forecasting GDP out-
weighed the “small” losses in forecasting population, since
the weight placed on the latter was very small. The estimates
which came out of the w = 1 run were used as the initial
guesses for the later bias runs, where we had plugged in a
similar “value system.” Thus the predictions for population
were improved over w = 1, but not by as much as they might
have been. There are two ways to prevent such problems in
the future: 1) plugin a slightly different error assessment, as
discussed in Section III-D and defined in [1, Appendix A]; 2)
program the “dynamic feedback” method for calculating all
the derivatives in a single pass, a method which not only
saves a great deal of computer time in comparison with
numerical differentiation,* but also gives more accurate
results.

ACKNOWLEDGMENT

The authors wish to thank Bob Stoker, Kenji Nagasaki
and Susan Wiley for their work on this project. They
especially thank Lilymae Fountain, of the CNCI project,
and also David McCormick, of CACI, for extensive helpin
making this paper more readable.

* See {2, ch. IT]. Numerous “tables of operations” provide examples of
the method, while Section II-xii proves the theorem which underlies it.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-8, NO. 9, SEPTEMBER 1978

REFERENCES -

[1] P.J. Werbos and J. Titus, “Predicting conflict in Latin America: The
first full test of Werbos's robust method,” Advanced Forecasting
Group of the Maryland Crisis Warning and Management Project,
rep: 10, Jan. 20, 1978. Copies should be requested from S. Andriole,
Director, Cybernetics Technology Office, Defense Advanced
Research Projects Agency, 1400 Wilson Blvd., Arlington, VA 22209.
[2] P. J. Werbos, “Beyond regression: New tools for prediction and
analysis in the behavioral sciences,” Ph.D. dissertation, Harvard
Univ., Cambridge, MA, Nov. 1974. Microfiche copies are distributed
by the Archives Dep., Widener Library, Harvard Univ., Cambridge,
MA 02138. A text copy may be obtained by writing the author; a text
copy is also on file in the Gordon-McKay Library at Harvard.
[3] J. W. Tukey, “A survey of sampling from contaminated distribu-
tions,” in Contributions to Probability and Statistics: Essays in Honor
of Howard Hotelling, 1. Olkin, G. Sudhish, W. Hoeffding, and W. G.
Madow, Eds. Stanford, CA: Stanford Univ., 1960, pp. 448-485,
[4] CACI, “Stochastic simulations of long-range forecasting models:
Final technical report,” CACI, Inc., Arlington, VA, Oct. 1975, vol. 3,
- Technical Appendix. Copies are available either by writing directly to
CACI (CACY, Inc.~Federal, 1815 N. Fort Myer Dr., Arlington, VA
22209) or by requesting the final technical report for contract
MDAS05-75-C-0179 from the National Technical Information
Service, Washington, DC.
[5] CACI, “Developmental methodologies for medium- to long-range
estimates: Long-range forecasting modeéls: Final technical report,
CACI, Inc., Arlington, VA, Sept. 1976. Copies may be obtained by
writing directly to CACI, Inc.-Federal, 1815 N. Fort Myer Dr,,
Arlington, VA 22209, or by requesting rep. no. MDA903-76-C-0255E
from the National Technical Information Service, Washington, DC.
[6] P. J. Werbos, “Advanced forecasting methods for global crisis warn-
ing and models of intelligence,” General Systems Yearbook, vol. 22,
1977. :
[7] T. H. Wonnacott and R. J. Wonnacott, Introductory Statistics for -
Business and Economics, 2nd ed. New York: Wiley, 1977.
{81 D. McCormick and P. J. Werbos, “Instability in the results of regres-
sion when applied to global political forecasting,” Advanced Fore-
casting Group of the Maryland Crisis Warning and Management
Project, rep. 2. Available from DARPA, address given in [1].
[9] J.J. McI]roy, “Dependency, Development and Third World Reglonal-
ism,” Ph.D. dissertation, Univ. Hawaii, Honolulu, 1974,
[10] G. W. Hopple, P. J. Rossa, and J. Wilkenfeld, “Internal and external
inputs: Assessing the relative potency of sources of foreign behavior,”
IBA research report, available by writing to DARPA, address given
in [1].
{11] A. E. Bryson, Ir., and Y.-C. Ho, Applied Optimal Control. Waltham,
MA: Ginn, 1969.
[12] J. V. Gillespie et al., “An optimal control model of arms races,” Amer.
Pol. Sci. Rev., vol. 71, pp. 226-244, 1977.

] S. 8. Penner and L. Icerman, Energy, vol. 1. Reading, MA: Addison-
Wesley, 1975.

[14] J. Johnston, Econometric Methods. New York: McGraw-Hill, 1972.

[13




