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Goggle Tensor Board: Use of Gradients
at the Core of Deep Learning
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TensorFlow Mechanics 101

Variables: Creation, Initialization, Saving, and
Loading Code:

Training
The training() function adds the operations needed to minimize the loss via

Firstly, it takes the loss tensor from the loss () function and hands itto a ,an op for
generating summary values into the events file when used with a SummaryWriter (see below). In this case, it will

emit the snapshot value of the loss every time the summaries are written out.

tf.scalar_summary{loss.op.name, Lloss)

Next, we instantiate a responsible for applying gradients with the

requested learning rate.

optimizer = tf.train.GradientDescentOptimizer(learning_rate)




Neur al nets became
because no one could train them even to
solve simple XOR problem.

Minimizing square error was considered and rejected for two
reasons:

(1) No one knew how to calculate derivatives efficiently, locally;
(2)The TLU nspi ki ng t ympoerddferanteabla. O |



Offer to Minsky to Coauthor BP/MLP
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