An Outline of Thesis Work, Spring 1971 - Spring 1972, Paul J. Werbos

Civen that this outline is being prepared in one draft,
before the research work is complete, I must apologize-in advance

for the inevitable loose ends and the imperfect writing style.

I, Objective
Basic obJective of the thesiss to contribute to the “theory of
intelligence,“ as defined in my old gzbernetica paper.
("Elements of Intelligence , Cybernetica, #3, 1968, ) In that paper,
I pointed ont a continuum that exists from "primitive” brains
to more “advanced" nrains, in evolution, Primitive brains

tend to work by “innate releasing mechanisms,"” by inborn steredtyped

responses to definite environmental triggers., Advanced brains, however,

decide what actions they prefer to take less and 1ess on the basis of any

thetx instinctive preference for one kind of action or another;

' they tend to decide what actions to take by considering the likely results

of these actions, and deciding which results they prefer. As they get more advanced,

they also make conscious plans further and further into the future,

In the 1limit, one can imagine a brain broken down into two distinct parts:
(1) & “notivation system"”, which specifies which “results” the systen
trefers, on a fairly consistent basiss in other words, thls system

provides a cardinal utllity function to the brain, mexkurkXyxiy

; (i1) an "intelligence”,

which has control over all motor systems, and which is built to maximize

~ the long-term expected value of the inborn utility function,

. Mankind is not perfectly an nadvanced" animal; he has inborn reflexes,
and inborn prejudices, The prejﬁdices ~ the irrational fears and associatlons
that can be unlearned with|experience - can be treated analytically

as a kind of "ancestral mepory", an initial setting of the human memory banks

' in a configuration different from what most people would consider "blank";



these prejudﬁces‘form an xd@orkxkt adjunct to the theory of motivation,

:but they do not give us any|direct information about fhe processing rules

ﬁhich'the brain uses on its| memory banks.

In order to uﬁderstand human thought, I would argue that we have to -
try to understand the ”intelligenee" of the human brain, (Also;wa b o tonie b
the motivation system, but pnot in this thesis,) The copcept,of “intelligence",
as above, is an intellectually manageable idea, wﬁose application to tﬁe human brain
would ree11y~amount to some kind of4"understandihg" of thought pfocesses.
The accumulatien of empirical data about the brain and Behavior,
by itself, cannot be expectied to lead to a manageable system of undersianding,
Lettvin, in criiiciiing the ideas above, has said that,"The biochemistry
‘of the human brain is really too complex to allow this or any other
‘ simple thedretieai scheme to work, In fact, it's too complex for us ever to
un&erstand it; we can ohly hope to build up pieces of data here and there,
You can'# take an anthropomorphic view of the human brain,™ I weuld claim -
- that the human brain, if nqt perfectly intelligent, has a fair amount

ﬂ: eerd za¥
ofh;ntelligence! the function of the brain cannot be understood until

that intelligence is analyéed, explained, and related to its biological

basis, ‘ | | | B
Before I go on, I should allay some of the anxieties one might have

,akeut the‘philosophical‘implications of all this, First of all,

an “inborn biological utility function” need not be limited to personal

- e
chemical inputs and outputs; such drives as ”motherhood“ and, “imprinting""

of affection have a well-studied biological (i.e, hereditary) basis,

~ One can argue that a pure Yintelligence®, with an inborn concern for

the welfare of its descenddnts,plus an ability to consider the far future,
would loek falrly altruistic by normal human stahdards. Second, there is
nothing in this model which says that an actﬁal intelligence will always

- be able to tell the truth about its oWn dynamics, or even to find

the best possible way to a hieve its goals' there?ore, this model is not refuted



by the wild diversity of value schemes, and the lesser diversity of -
- operational goals, that human beings have displayed in their history,
The model does suggest that “intelligent” systems will switch

to better ways of achieving|their goals; as they develop a better understanding

of themselvés, their envire en£ and their options; the ulterior

smtE motive of this thesis is to contribute a little bit to that

historical process, |
Sp:~the first goal of f is thesis is to explore the theory of

"intelligence”, the theory‘vf systems which are capable of maximizing

the long-term;expecféd value of their utility functions, in new andrgompléx

environments, (The first sﬁ oal of this research was to define

a bit more»precisé1y>what we mean by "new and‘cémplex environments,a"

&Huwzﬂl i
. in a generalized sense,’;

acticey I often tend to reasoh from : e
‘the general capabilities which mammals have had to develop over time,)

The second goal is to pick out the particulailtype (or types)

~of intelligent system which|correspond best to present empirical data

'#bout the human brain} the resulting model of human intelligence will

1ikely be wrong,'ih the end{ but it wiil pfovide a basis for experiments

to probe the relevant issues, and for future models to account for thé.results of

such—experiments.

All schools of psy¢hology agree that the human brain is capable
of pursuing long-térm goals, whether of reinforcement or of
some other kind, fIirly efficiently., From the themy theory of
natural selection, |[we can deduce that the human brain was evolved
to achieve some kind of biological success with maximum possible
. efficiency through|time, Either way, the human brain is
’ capable of finding|approximate solutions to the dynamic programming
. problems implied in all these forms of behavior, From there,
'to our description|of an "emotional system", is a short step.

~ of the environment it lives|in, For simplicity; let us assume that

its environment looks 1ike g Markhov chain, a Markhov chain which

. ' 3



will change if the organism'
which will always have a uni
In practice, our system ough
than these, but it should ha
these conditions demand, Our
eontrol problem of finding al

every possible contingency i

to find an approximation to

s action-strategy changes, but a Markhov chain
gue equilibrium probability vector,
t to be able te handle tougher conditions

ve at least the capabilities that

system will face the "open-loop"

n optimal mm strategy covering

t will face; therefore, it will have to try

the Bellman/Jacobi function, Jo(x).

given its utility function, u(x). Crudely, this function, Jo(x),

represents the total worth of the situation, "x", to our organism,

the long-term worth, while the inborn utility function, u(x),

gives only the short-term or|

intrinsiec value of being in x,

(In practice, the system only needs to choose between a limited

number of near-term xE=mikx i

possibilities at a times thus it needs to

. know JO only in a given region, However, under the conditions above,

the value of J0 and its deriv

upon one's strategy and values in all contingencies, In

ratives in any region will depend, in general,

actice,

a human's choice between present alternatives will often depend upon

his preferences between conti

inge@incies not likely to arise very soon;

for example, he may pick up g pen to write certain words, words he chooses

in order to foster the success of projectss which will not bear fruit for

many years, Thus, the system

needs to look for a general approximation

to JD, not merely to the locdl derivatives of JO, in order to carry

out the necessary calculation

S.)

Conversely, a good approximation to JO would solve the problem

of "planning" for our system;

once the system knows JO, it need only

take actions to maximize JO in the short~term, a problem which should be

relatively straightforward,

So: the system needs some kind of central organizin

a principle for putting toget

inciple,

her all of its data from subsystems,

and coming up with an approxipation to

0
J . L



If we treat our enviromment as a Markhov chain, as above, we may write:

—

Xitt
"S" is a strategy; "X" is a

The intrinsic utility of bei

= M(S )")’(’Jc

probability vector; M is our Markhov chain,

ne in'f'depends on the probability, Xi, of

being in any state "i", times the intrinsic utility, u(i) or simply Usy

of being in that state, Thuj

u(x) =
Similarly, we may define JO(
Howard has shown that we can

T = TM(s

where 5% is an optimal strat

(u(1), given X) = T or(1)y; =S X,U; = ToX
x) = 3-%, . i

write:

“) 2T - BT,

egy, P is the equilibrium probability vector

for this strategy, and T hag the component “1" in every state “i",

(In words: the long=-term val
value, above and beyond the
plus the long-term value to
He has shown that we can evg
a suboptimal S*, solving fon

to define a new S¥ = a bit &

So : at any one moment in tji

ue of each state is equal to hmemkmmdx its intrinsic
intrinsic value we expect on the average,

be expected of the situation which will follow it,)
lve towards an optimal strategy by plugging in

the resulting'F, then using 32@3“'3

etter = and so on ad infinitum,

me, our system, with a tentative strategy (S*)

in mind, has to be able to calculate the T which follows from this mkxakxg

strategy, in order to produg

e construective modifications to its strategy.

We can solve Howard's equation, formally:

7 = O(1-

There are many ways one coul

One could try to compute (I-

-1
My) (Where M

h = M=M, )

d try to compute J from these formulas.

M )-1 directly, by row and column operations,

0

but this would be totally impractical; the true M,, in this case, involves

every possible configuration

o

0

of the system's universe, and we must m-hw&w

Hk“«;\ Cone ot oy 3ou&

simpler such approximations

One might expect, in practig

auhapiroximatiens to the true formula,

e, that "M" would be represented by a circuit

g



giving out sample X _,,, from sample Xt; thus, one might expect that

t+l
matrix "multiplication” - the appliecation of such circuits in series =~
would be realistic, while row and column operations would not,

So: we could try a simple iterative technique to get the inverse,

the technique on which Howard's formula is mffmmied effectively based:

N+ I (1)

e basis of standard dynamic programming,

(Roughly speaking, this is
and equivalent to my Cybernetica proposal, Howard's original

formula is reminiscent of priice theory.) This procedure is not adequate

for our purposes, MO 1s supposed to be a model taking us up
one minimal unit ih time, from t to t+l. Each use of these iterative formulas
would take at least one minimum time interval for our system to perform,
probably a lot more; yet, witth each use, we push up our effectgive
time-horizon only 1 unit of time ahead into the future, If we changed
our strategy at any decent rate, we would never be able to look ahead
into the future by more than a tiny fraction of our past lifetime,
So: we have to find a much faster technique, that does not involve
row and column operations, tp invert the overall matrix, I-MO.

Using multiplication, we have one way to build up quickly to
what amounts to "distant time intervals," We can square MO to get Mg,
square that to get Mg, square that to get Mg, and so onj the amount
of work required for a given| future time-horizon is only proportional to
the log of the horizon distance, allowing substantial foresight,

This method can be used to compute an inverse, by storing the high powers of MO,

and then computing:

o T, 2

This kind of method, -jumping| across long time-intervals, is necessary,
in one form or another, to any system capable of computing its "J"
with enough foresight, Intuitively, xkzk this method reqﬁires us

to develop models that allow|us to jump ahead, to predict the distant
| 6




(distant by many seconds) consequences of our present strategy;

that's what MZ?S) represents; given that mammals do appear to have
that capability, this idea is quite reasonable, Even in my
Cybernetica article, I recognized that such capabilities must exist
somewhere in tﬁe brain, The problem, here, is that the capabilities

must exist in the central organizing system of the brain,

Given that one could use many different time-intervals of prediction,
for different purposes, it is easy to imagine subsystems based on
long time-intervals; but it|is hard to imagine how the central organizing
system could rely on égg specialized system of time-units to |
weigh the recommendations of these different subsystems, The best way
to solve this paradox was not, as Mao would put it, by seizing the contradiction,
but by ignoring it for the moment,
To solve precisely for 31 in our formula, we would have to
consider more than just time economies, I-Mo, in practice, would be
a very low-density matrix, since one does not expect drastic changes
in the state of the world instantaneously, Our problem is to invert
a low-density matrix with a minimum number of operations, involving
a minimum number of terms, &e will have the further problem of finding
pepreat
a natural way to the | inverse, because we could not hope
to store such a large, full matrix explicitly, If we can construct the
inverse implicitly, by imagining several linear circuit layers

connected together, instead|of one big layer corresponding to the matrix,

We can avoid taking the timg and trouble to multiply out the submatrices;
we will still be able to muitiply this system by’ﬁ'on the left, as before,
and take advantage of the s%me economies which make Howard's formula
superior to equation (1), aﬁd thereby cut the costs of an exact calculation

down to a minimum, txximiizf The same technique could also be used in

input-output economics, |
|

i
|
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Suppose we wish to invert a matrix which can be decomposed as follows:

(A, and W, represent the alpha and omega
of theé system's presence in their region, )

(In othervwords, let us assume that there are three - really n - groups
of states such that a state in one group is never followed directly

by a state in another group, but rather by a "transition state”

in the central "transition group” of states, Low density matrices
which do not have such subgroups cannot, except in special cases,

be dealt with economically in this context, for reasons which will
become clearer later on,)

By row and column techniques we get the inverse:

: -1 -1 -1
G -G, M ~Gil 1 G
-1 -1, -1 1 -1 -1 -1
Htac TN A GH MDA GG M] A, G 3)
YT 1, enwt wleslaowwl tacut
M,"A, M,TAGH M T, THITAGH M, T, ALGH A,
-1 1 -1 -1 -1 -1 -1 -1
-3 A0 M ALGHy M) WG Nt G A
-1 - -1 -1
(G = (B - WMTTA = Wta, - WMTMA)T)

Even in the case of economics, where one usually prefers an explicit inverse,

this techniques of computation can save a lot of effort, especially since the

IIM

i

small number of transition industries under some decompositions,

" matrices may be ordered in a simple way, and since there may be a

In the case of intelligent systems, this kind of decomposition leads to

a set of iterative techniques which can work more effectively through

time than that of equation (1), without the troublesome artificiality of (2).

We can calculate, first, the Wngi by iterative means:

8
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Intuitively, this represents the matrix of transitions from the i-th

region to the transition region; it represents the probability

that khkeExRIXELXXXANS

a system starting out in state j, in region i, will first escape to the
transition region by a transition to transition state k,

(The careful reader, comparing this formula to Howard's, will note

that our "Mi" are terms in the decomposition of I-MO, not of MO.)

Wi gives us the probability that such a transition will be made in one step,
according to our original decompositien, while the other term

on the right side of (4) gives us the probability rarkxxxkxarskkkanckaxk

of a transition to another state

in region i from which axixxmxkkiwr the first escape will be to state k;
the logic of this formula is the same as the logic of Howard's,

If we think of the actibns to be taken in region "i" as
forming a “substrategy", or a "subplan" (Miller, Galanter) or
a "schema" (Piaget), then this matrix (WiMzi) describes compactly
the final result of applying that schema, as a function of the initial
state in region "i", Building up from these descriptions, we can Exkx caleulate G;
each step in the iterative calculation of G represents a step of
several time units, since each term “WngiAi“ represents a transition
over several time units, (Other low-density matrices, which cannot
be decomposed in this way, would allow short-length connections
between most pairs of states, making it impossible to achieve
a description of longish time-intervals involving few states on one side
of a transition matrix,) This decomposition of a strategy (matrix)
into a hierarchy of substrategies can clearly be continued on down,
with substrategies of substrategies, if the Mi can be decomposed in a way
similar to that of the overall matrix, What we wind up with
is a central organizing principle based upen a hierérchy of
"plans” and “subplans"; this idea fits well with traditional

navweshalasd mal +thaorvy vet. s formulated above. (e]



it is free from the ambiguity and determinism of traditional theories,
If we look carefully at this formulation, we can see three ways
to broaden it,‘right away,
First of all, we could try to decompose our state vectors by
another simple operatggz besides tensor addition as abovej
there is one other simple binary operation - tensor multiplication,
Normally, it would be too much work to decompose a matrix this way,
but our individual "states"”, in this case, each represent a configuration
of a large set of input variables; therefore, our state vectors can be treated
as tensor products of the smaller state vectors associated with the
configurations of subsets of these input variables,
In effect, we can sometimes break the world up into a number
of independent, parallel sets of variables; we can simplify our
decision problems by treating these sets as separate little worlds,
at least in the contingency regions where these little worlds do not interact,
So we can decompose our overall schema into sequential subschemas,
as before, or into parallel subschemas, (I have also tried a few other
plaﬁsible decomposition approaches, but, thank gocdness, they didn't work, )
Second, we can consider the practical fact that the same
"subschema" (e.g. walking) will occur, cver and over again,
with certain variations, even though the same exact set of world-contingencies
will not recur; thus, for practical purposes, the brain can store
a large set of subschemas which are "different," formally, as a single
parametric family of subschemas, by means of a single paxaxEixk circuit
allowing variation in its input parameteis, (This is similar to parallel
decomposition, )If we represent our subschemas in this way, then
a given subschema could be used within several different supraschemas;
therefore, we will get a lattice structure of organization,
instead of a simple hierarchy,

-
Third, we can go beyond the question of determining J for
10



a given "S", Howard's system involved the creation of a new S, Sz,

by choosing a new action, at each time t, to maximize J at t+l,

In effect, his system of updating strategies has the same defect

as his formula for updating J; it advances only one time-unit

for each cycle of computation, If we use schema~completions

as a new unit of time in calculating J, we can also use
schema~choices as a new unit of decision, This also corresponds to
our intuitive ideas about planning, This may lead us to an anxiety:
the matrix of possible transitions is much more dense than the matrix
of specific transitions that we decide to allow under

any given efficient strategy; however, Howard's work still allows us
to use the specific matrix to get J, even when we are contemplating
the use of a new subschema which will éhange the pattern of transitions,

In principle, we could optimize our overall strategy simply by

optimizing at the lowest level, as in Howard's original formulas
however, if we allow positive changes in our strategy on all levels,
we can speed up our approach to the global optimum, without
losing precision in our final choice,
Having broadened our formulation, we have to smooth it off
into something more practical, Our goal was to find'ﬂkI-MO)-l,
not (I-Mo)-% By looking for'ﬁ(I-Mo)-l, we can simplify our calculations furtier,

Looking back at (3), we can see the possibility of calculating BB ﬁM;l .

JQZM;% and G in order to eliminate calculations based on a large number
of possible states, Intuitively, this means that we can describe

each subschema - for use higher-up - in terms of ﬁM;lAi (expected total
intrinsic to be earned in a subschema, from the moment of our entry)
and WiM; A; (transition matrix from entries into the subschema

to exits from the subschema); these terms, plus B, are enough to let us
compute G, and to compute the result of multiplying ﬁ times the

first column of %33} formula (3). This tells us the value of ? in

11



the critical, transition states, and allows us to choose between
possible subschemas, Let us call this\portion of J, 3&.
Inside of each subschema, to allow suboptimization, the j
consists of two terms - a'ﬁMgl term, the J of the region "i"
x¥ixkyxkksetf considered in isolation, plus 3&W1M;1; in other words,

)-1 -1

back in (3), the later columns of (I--M0 are the sum of an M,” term,

in the row corresponding to region "i" itself, plus a lot of other
terms which equal the first column multiplied by Wngl.
Intuitively, this means that we determine the Joof a state inside
a subschema by finding the J° of each of the states the schema
may eventually lead to (3&), by weighing these Jo's according
to the probability that our given state will lead to any one
of the final states (WiMil), and by adding a term to account for
the total u we can expect to get before we leave the xmkEmx subschema.
Now that we have smoothed out our framework a little,
we can broaden it some more, We can come back and account for the
old problem of ﬁiﬁ, a term we have formally incorporated into M0
but effectively ignored, This term represents the average intrinsic utility
expected per unit time, in the long-term, In effect, it represents

the utility of time, ﬁ-ﬁ'will have to be calculated somehow by our system;

also, our system will have to be able to deal with changing'ﬂ'ii as it

changes its strategy, We can deal with this by treating time as a kind of
separate, parallel variable to the other variables in our system,

The time implications of each subschema can be summarized adequately

by a vector, Ei analogous to ﬁMgl, representing the expected time from

a given state in the schema to exit from the schema; given that the cost

of taking a certain amount of xm time is independent of the state finally reached,
it does not matter how that cost is distributed between different states
eventually reached, nor is the probability distribution relevant.

Within each schema, we will get a new term in our formula for J:
7 =gt + Jougt + o7,



where u is the current estimate of U P,
And that's about where I was back in late October, I figured
that the problem of describing a schema (getting WimzlAi)
by means of a definite circuit could be treated as a classical problem
in statistical prediction or pattern recognition, based on data
partly from experience and partly from simulation, I figured that
the same tébhniques could be used to calculate all the J's
in the formulas above, including'ﬁmgi, by using Howard's formula
(using different effective time-units, as indicated above)
as the basis for another statistical prediction system,
The HiM;1 term bothered me a bit, however; the greatest generality
comes from assuming that a schema will decompose these final states
into distinct result categories, but will also allow supraschemas
to specify parameters to further describe the variations of j&
within each category, (For example, one might "succeed" or "fail",
yet still try to achieve the maximum level of success, )
In Februvary, I worked on this again, and concluded that this formulation
of WiM;1 is really the most general, for the purposes of intelligent systems;
however, I have not yet been able to find convincing arguments that
mammals have a natural ability to deal with distinct result categories.
The tricky part in caring for schemas comes in the aggregation
of new schemas and in the splitting up of old ones; these issues, I dealt with
in more detail in Xaxzk February and March, Also, I dealt with the question
of special expoential learning systems, to find the equilibrium of
a Howard-type equation relatively quickly; these simple techniques
turn out to be very useful within the context of a plan hierarchy,
but do not have the ability to replace it, In late October, after
I put together the ideas above, my next step was to take a harder look
at the "classic problems of pattern recognition," which are clearly essential

to any model of intelligence,
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III, Pattern Recognition: The Paradigm of Time-Series Prediiction
The problem of general pattern recognition turned out to be trickier
than I'd expected, My work for Deutsch last year was a paper of advanced techniques
in predicting statistical time-series; also, last year, I had looked carefully
at the work of Minsky and Uhr, and had proposed a general model of
pattern recognition as a supplement to my old Cybernetica paper.
In practice, the problem turned out to be quite complex,
Logically, it seemed reasonable to work with the following paradigm:
to predict‘i;+1 (an input vector) from‘—ft by means of a circuit which
"duplicates the actual process"”; i,e, a circuit which conjures up

likely‘i in proportion to their actual probability of occurring

t+1
after the given data,hit, Such a circuit could be called a "basic model

of the environment of the organism,” The same circuit could be used, however,
to "classify" patterns, i.,e. to predict a description vector,'a,

from the given input,'i; it could be used to adjust the function Jo(it)

~ to be a good predictor of u(ﬁ£)+Jo(it+1), as in Henamddszfee Howard's formula,
theistizasnfzenmday by treating diw Jo(f£+1) as a trial function,
temporarily fixed in value, Also, if we give our system a "memory blackboard"
(or a "symbolic blackboard"),'?t, we can try to develop two circuits,

givenhE

. » e e e — cenliB
one to predict X and Xt’ the other to calculate Tin from Ty and Xt,

t+1 t
We can expand our mmdd prediction paradigm to include the joint adaptation
of both systems, In this case,'§'w111 tend to be an extrapolated image,

based on past memory, of the state of the entire universe, including those

parts of the universe not now visible to the systenm, CF will also serve as
storage for the xE intermediate results of calculations which could not be
performed quickly emough,) Such an expanded pattern-recognition system
I call an RCM;, or Reality Comstruction Module,

So: how do we build an RCM?

The first time that I worked on this, back in 1964,
I relied on the "Threshold Logic Unit" model of the neuron, a model
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which originated with McCulloch and Pitts and which is popular to this day,
A lot of early "perceptrons” were based on ad hoc systems for

adapting the coefficients of these units, systems totakly unrelated

to established knowledge in statistics and mpkimiax optimization theory,
Nowadays, pegple seem to be more interested in proving theorems

about the th;oretical possibilities of TLU networks, when the
coefficients may be plugged in by fiat, than in studying adaptive networks;
this may be due to the basic intractabiliyy of the TLU concept,

But the human brain does not have all its coefficients plugged in by fiat;
we cannot ignore the question of adaptive routines for our perceptual
networks, Back in 196;, I noted that the RCM proposed above has to have
some ability to “throw dice", in order to simulate stochastic processes,

I also noted that timing uncertainties, etc., do introduce random factors
in human neurons, Therefore, I proposed a "PLU" concept. The TLU wds
designed to calculate a linear combination, W, of its inputs,

weighing them by a set of arbitrary coefficients; then, if W is greater
than zero, the TLU fires a 6ne, or otherwise it fires a zero,

(Minus one, in some formulations,) The PLU also calculates a W, but if W
is between one and zero, the PLU behaves differently from the TLU;

it will “throw dice" to decide whether to fire a one, mmmmxdimgxkm with a
probability W of firing one, (A neurophysiologist at RAND has recently
proposed an equivalentm model of the neuron, on empirical grounds,)

In the Cybernetica article, I proposed an RCM system based on PLU's;

this November, however, I proved that that system, while correct in principle,

is incredibly inefficient; I was able to give a good indication that neither

TILU's nor PLU's can give us an efficient basis for pattern recognition,

So: I returned to a simpler, more direct approach, Suppose that

we had a direct network (no r for now!) going from the data X, to the estimate

t

R
Sl inilnr

made up of layers of ysubsystems:
"zi = f(gi!?iiﬁ)!

i

~

X

tHL?



where ‘2i is a set of coefficients (a.ij being a component of 'Ei)'”,

where'T:.L is a set of Zj's from the next lower layer of the system,

and where R is a random vector, Suppose that we try to measure <aae >
ij ?
" the average change in the error of our prediiction with a change

in each coefficient; if there were any direct index of # how to adjust coefficients,

bit by bit, surely this derivative would have to be measured, either
by itself or along with second derivatives, (i,e. we minimize error,)
We could not measure the average derivative efficiently unless we could
also measure the derivative in a particular case history, with only two
time=points of data. (it and “Zt 41+) But the effect of a; 5 on ?t H

and on error is mediated by its effect on Zi; thus we need to be able to

compute Eg“'a%z’” . (The Z. derivative is controlled for other Z 3 on the same
1J
level, and for subsequent 'ﬁ's and coefficients; the a. deribative is controlled

for other inputs to Zi' Formally, we are invoking the chain rule, )

Biven that -19- is computed back from ’g)zc it should be clear that we

want £ to be d:.fferentia.ble in ? for all 2's and R's; given that we also
want a——a—-i-@ to be defined, we also want f to be differentiable in a.,

for all %’s and R's. These two conditions will be met by almost

any reasonable f that we might think of, except for the PLU and the TLU,

The conditions do require that Zi varies continuously between its minimum
and its maximumj; the PLU and the TLU restrict Zi to be 1 or O,

In practice, current neurophysiology does show that many neurons tend to fire
in bursts of spikes, bursts which vary continuously in strength,

Therefore, I propose a different model of the elementary neuron ~ the "CLU",
or continuous logic unit, & A CLU would calculate W, a linear combination
of its inputs, just like its predecessors, If W is less than zero

or greater than one, xmzpmmiiwmixy the CLU will fire a zero or a one,
respectively, just like its predecessors; however, if W is in~-between,

the CLU will simply fire ¥y a W, ("One", in this case, does not mean

one spike, but one maximum burst, In principle, if we leave the seeesEEREPiza
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zero~-floor in place, we could forget mmkk about this ceiling of Yone"
on the neuron's output; we would still have an édequate nonlinear,
continuous unit, )

Once we have a network ovaLU's or the like,
we can take one of two approaches, Either we can adapt a.ij more or less
in proportion toﬁ;———), or we can account for the second derivatives,
The second approach turns out to be equivakent to nenlinear multiple
regression; it also turns out to be too expensive for an efficient brain,

So: supposing that we have an historical record of i; and'ft

from time O up to time T, what is the fastest way to calculate "<'de > 7
lJ
Let me assume that:
L(t) = (1=8)L(t=L) + 6) e(X,ss Xy )y )
( ( ) ( . C e( ‘t;i’ ‘ta:i ] (5
where L is the overall loss function due to errors up to time t,
and where 6 gives us the freedom to allow an expoential decay
in the value of past information, Let me also assume that:
= S(X li-f.t_,i;a)
ft = B(Xg oy 08)s
where ¥ is a set of coefficients such that each coefficient connects only
one component of'ft_i or Xt-i to one component of r, or Xt‘

(This is for simplicity, and leads to no loss of generality,

A time-gap of "1", here, refers to the cycle time of our individual neuronsw.

if predictions were made across longer time-intervals, allowing us to
compute more interaction terms, we could treatF as an intermediate
storage, or we could simply declare that the function "e" is automatically
zero except at times of a new data cycle; we could declare that “ﬁ"

gets an input equal to either zero, or to the last data input,

or to the last data input plus a timing signal,I am assuming here

that our neurens are CLU's or some variation on CLU's, )

We want to kndw%gggzl; controlled for fb; fer'g; and for the actual values of'fé

i
in the entire interval,




let me define:

)\ (T,t) = ?—L-)-L 1 , controlled for Lft), ¥, and for X in the
a, ., = t
ij interval t to T,

Using the chain rule, we will have, for a.j which provide inputs to r:

s

N+ (Tt1)=)\i(Tt) +B——ivi .%—L-Q-Tl
ij da. 1J Tiple L. >
other ?%,IQt),X from t to T
inputs
tor

i,t
The first of the two derivatives will be trivial to compute, with CLU's;
to compute the second, we have to work backwards from time T using the
chain rule again:
'B?cL 2 %%ﬂlgrr - GT-tZS%e'(xt"‘kﬁt,kgx";k
t=1,1 tyk 97t~-1,1 kt 7! rt-l;i
Given that )1 AT, 1=0 and ELi—Jeﬂ, We can use these two formulas to |
work back from \. j(T »T) to >‘1 .(T 0), which is what we want to calculate,
For each step backwards in time, we have to update one number C\ij) for each

oL

coefficient, and one number Q&;T) for each component of r; we only need

to use enough storage to store ihe moee current values of each set of numbers,
The sums over k should be fairly easy to compute in each case, since they
only involve the T connected directly to Ty by CLU units,

(i,e, the sum is nonzero only for terms with k such that Ay is nonzero, )

The total amount of processing to calculate these numbers is

on the order of mT, where m is the total number of coefficients,

One could not hope for much better, even for the coefficients which

affect Xt,k directly, and whose adaptation is trivial, by the method above,
(Furthermore, if one is worried about hill=-jumping, one should remember that
any trial feature, set into this system with zero mmkmmk coefficients
attached to its output, initially, will gradually be "listened to"

via significant nonzero coefficients in other CLU®s, if it helps predict anything;
therefore, there is always an uphill path from an initial predictor system

to a better predictor system, or at least an uphill path to a third system
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making use of both to get better results mR than either one of them,
When we set up trial features, we will admittedly be more.likely to
find a simple g§S§¥%£En of value than a complex one, since we have
to rely on chance; however, pattern recognition itself is limited
by the basic epistemological assumption that we can rely on Oeccam's Razor,
Without Occam's Razor, induction itself would be impossible;
I would add a discussion of this point, if this paper were not too long already, )
However: this model of pattern recognition does not fit with
anything we know about human intelligence, It requires a long, synchronized
history of the system's perceptions, in detail, Even Penfield,
the apostle of total recall, admits that perceptual dgggiin usually
are not stored by the brain in any detail; it would be difficult to imagine
the mechanism of such storage, Furthermore, this model requires
a backwards kind of dreaming, When humans do give up their
perceptual centers (e.g., visual mmrkexxy} cortex) to dreaming,
they usually dream forwards in time, In deep sleep, the visual cortex
does not show the coordination that the model above would require,
(MIT Neurosciences Symposium, Volume 2, )
On the other hand, we can't adapt xxmmimmxk such a network of neurons
efficiently by a forwards-moving routine, I spent quite awhile
trying to find some kind of forwards-moving adaptation routine.
The basic problem is that one has to update é;;%‘t); where i
need have no special relation to j and k; this is a huge set of numbers,

Multiple regression, by the way, imposes a similar requirement,

X K, .
since one has to correlate Qaa with Q;;Eﬁi) across all time-periods
' Jjk 1m

and all choices of i, to calculate the cross-correlation matrix between
the changes producgd by dajk and dalm.
So: we face another paradox,
Suppose we tried to eliminate the “Z" memory between different time-periods,

Would that help simplify our problems? If our network for predicting'§£+1
19



had several stages, operating either in parallel or one-after-another,
we would still have to work backwards from the top stage to the bottom stage
after every feedback, by kgm the formulas above, We would either

have to store everything in the network in a coherent, synchronized record =
>
again, a doubtful idea - or we would have to update,gaL
ij
as Wwe get ourl input; the second choice seems unavoidable,

on the spot,

Suppose that we had ten layers operating in parallel, with "1i"
the cycle time of each layer and "10" the time-gap we are predicting across,
Then we would really be predicting Xt+10

While we were processing data at each stage, feedback would be coming back down

from Xt, Xt+11 from Xt+1, and so on,

to the same mxX cells from the other direction, The bottom layer would
have to wait precisely twenty cycles before its mxmstiwikmwx normal output
had effect all the way forwards, and produced feedback ten cycles back;

if its timing were off by only one cycle - a 3% error, rounded off -

it would be using data from the wrong cycle, Therefore, cells in this layer

would have to have a memory of their actions twenty cycles back, ready for

instant retrieval, ® based on perfect knowledge of
the timing connections of other layers (which make it 20 cycles, not22),
in a strange kind of push-down storage. This would require a very rigid
inborn layering system, to keep the time relations all rigidly correct.,

There is a simple way to overcome these difficulties, at minimal
real cost to our intelligent system: by deliberately bringing in data in cycles,
4» and wait until & X’t 0

before doing anything new, Then each cell would only have to remember its

Thus our system could bring in X is in hand

action in the last cycle of prediction, and it wouldn't havelr to keep track

of what layer it is in, In fact, the system could even bring in §£+10

for prediction of-i

to the feedback system only, then bring in'i £4+30°

420
bring.§£+30 in for the feedback system, and so on, In general,
data-cyecling is essential for simplifying the feedback problems

I have discussed, In practice, this is exactly what the human system
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of pattern-recognition does; visual information, which requires several
tayexsxmf levels of processing in the cortex (17,18 and 19 at least),
is cycled in from the thalamus according to an alpha rhythm of
about 1 eycle per 1/12 second, This compares to about 3 milliseconds
per synapse, and about 1/100 second maximum per processing cycle,
Other kinds of perceptual information, requiring less processing,
can be cyecled in at a higher frequency, (e.g, somatosensory information,
which comes in with a high-frequency rhythm,) The considerations above
provide an explanation for such brain rhythms,

Unfortunately, the explanaiion above is not the only possible explanation,
We have partly resolved the paradox of forwards versus backwards:
we have decided that the feedback system does work backwards, and may go backwards,
say, ten cycles to process a set of data, but that the system as a whole moves
forwards - over longer cycles - in the list of data pairs it considers,
(Like the old "one step backwards, two steps forwards" idea.,) But we haven®™t
brought back the ¥ vector yet, There are three different ways we could

tring it back; I'm not sure which is best, and I admit that this is one

of the most serious ambiguities in my present model.(The only other, so far,

has been my uncertainty about distinct result categories, in describing Wngl.)

-t

-—
First, we could simply stick in r, along with X, as a kind of data input;

t t
when we feedback to = f;, we could feed back one more stage with thef?

t!

since these cells would have no other feedback to process in that feedback cycle,
(i.e, There would be no feedback from‘§t+1 available in the current cycle,

Still, we might need a little trick with memory to record the inputs

to";t+1, for use in the next cycle,) This would keep the procedures of

the paragraph above intact; given k that some kind of short-term memory,

or reality construction, is absolutely necessary, it would be hard to imagine that

Wwe could accept less provision than this for T Also,people have found

_t.
clearcut recursive, reverberating circuits among the stellate cells,
in the fourth layer of visual cortex, the cells which receive the raw input,
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i,
(cf, Beritashvilfih Handbook of Contemporary Soviet Psychology, Coleman ed,)

On the other hand, we might consider a larger role for'%%, by
allowing recursive processing within the normal layers. (The neurology,
as above, suggests as much,) It seems wasteful to think that we should
use each level of cells, one at a time, while leaving most of the levels
idle most of the time; if recursive connections were allowed,
we might be able to use a given cell several times in each cycle,
So: two new possibilities, In possibility number two, we could have each cell
remember only its last active configuration in the past processing cycle,
This would allow us to continue on, as in the paragraph above, However,
there are many variations of this idea, In{stead of retaining the last
active configuration, the system could calculate an average configuration,
based on an expoential learning system to weight the average towards more
recent configurations,The system could refuse to send back more feedback
after its first input of feedback in any feedback cycle, or it could
reduce its attention to later feedback according to an expoential decay function,
These expoential decays are related to the autocorrelations of the variables affected,
Unfortunately, possibility number two looks like the most likely,
from the anatomical data, Possibility number three is to allow these
recursive links, but to adapt them honestly, by the formulas above,
Then each cell would have to remember its input and output for each
neuron processing cycle; we would be back to the need for a synchronous memory,
(Notice that this would not obviate the need for an alpha rhythm:
if there were ten different inputs cycling at any time through visual cortex,
then each cell in this recursive net wowld alse have to process feedback
on ten different levels at once, one level for each level of depth in
its memory; the human brain may be subtly engineered, but it would have
little reason to engage in that kind of wild complexity, given the few extra
benefits to be ha.d.)m third possibility, with an alpha rhythm,
is not quite as bad as the early cycle-free system I talked about,
22



At the end of each major processing cycle (Xt+10 received),
each cell could immediately begin to play the cycle backwards
at the same rate it moved forwards before, Synchronization would be
achieved automatically, due to the common starting time;
there would be no need for an elaborate system to communicate
time betweeﬁ cells, If the feedback part of the cycle were extended,
to allow the system to play back memories from before Xt, we could adapt T,
as accurately as we like, by the original formulas, The timing of this
approach would be no more awkward than that of playing back to the
beginning of the cycle,

The first two possibilities make a lot more sense, economically,
than the third, But they seem to "cheat" in forming memory, They would
allow us to save, from time t-1, the information of greatest use
to predicting time t, (This includes the memories available at time t-1,)
They do not allow us to cohsider the entire future in deciding what to save;
in other words, they don't let us save the information of greatest use
to tomes t+l and later, except by accident, However: even our "“right"
formulas are designed to let us remember the right details for prediction
over short time~intervals, To remember information important over long time-intervals,
we may have to resort to direct use of long-time schemas anyway.
If there is a real universe, with a few prominent variables of
great importance thét we can see only indirectly, we would probably
save them even in the crude memory xzmh=xes systems of possibilities one and two,
If the vgriables Wwe save depend all that much on time horizon, then none
of the variables of short-term importance can expect to have unusual
long~term importance; at any rate, there would be little reason to expect
one short-term set to be that much more impertant than another, The extra cost
of possibility three seems to be more than its value justifies,

Possibility two clearly looks best,
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Before we go on to more interesting issues, there are a couple
of other possibilities here I should mention in passing, for completeness,
One might imagine that possibility two could be true in the cortex,
while possibility three could be true in the hippocampus, mxxIRXSEMEXEKREX

a specialized long=-cycle-time

organ with a known relation to short-~term memory capacities,

Or the hippocampus might save a memery of its recent states,

one configuration per major =my=m processing cycle, to allow something

like possibility three at a lower cost, But if we look, in the hippocampus,
for something like the stellate cells of the cortex, we find only

"basket cells", which do not seem to form the same kind of

recursive network, (cf, The Eccles symposium, Brain Mechanisms and Consciousness,

1965, may have the title backwards.) The extra costs of possibility three
make me suspect that the hippocampus is more likely to be using
possibility one or no recursion at all then possibility three;
if the hippocampus were used to make emotional evaluations of hypothetical
possibilities, then "recursive memory" between cycles might simply
get in the way of keeping the different possibilities distinct.
I am not yet ready to make a definite comment on this possibility,
In principle, one might also design a system with "functional feedback,"

One could put in a special adaptive network, parallel to the major one, e
>, »,“_c‘: w~ ¢

7

>

to try to predict the feedback which will come back to Tiy

the known values of"r't andlit: at the end of the feedback cycle of the major

network, the minor network could then be adjusted, The feedback

of the major network could use this extra network to give it feedback for'§t+1,
. = .}

given the known values of Ting and Xt+1'

recognition system could eliminate certain kinds of short-sighted bias,

This three-cycle or four=-cycle

but it seems very unrealistic as a model of anything in the mammalisn brain,
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The last ten pages add up to a fairly conventional,
fairly explicit model of a pattern recognition system;
systems on this medel I call CRCM's, or Continuous Reality Construction
Modules, However, thigs model neglects two critical points:

(1) My initial goal was to conjure up §£+1
according to their actual probabilities, The system above
does not do this, Also, there is no reason to believe
that this system will help extract out variables of interest
to higher-order systems,

(1i) In the beginning of this paper, I stated that

the first subgoal of this thesd#s would be to define what I meant

by "new and interesting environments," The R ENNEREe

I discusséd in the previous section is not seriously affected
by the lack of such a definition; we presume that our pattern
recognition system will take care of these assumptions
about the environment when it produces a model, "M(S)",
for the motivation system to use, However, when we talk about
pattern recognition, we should make these assumptions more
explicit, and we should make sure that our pattern recognition
system fits with the assumptions as well as possible,
The first point I have been able to deal with fairly effectively,
especially this past month, The second point has caused me more headaches
than any other aspect of the thesis; I think I have it mostly licked,
by now, but there is still some work left to do. (As I finish writing up
my work on the first of these points, I find that I'1l have to mk¥k% limit
my discussion of the second to a dogmatic summary, Hadn't expected to write so much, )
So: the first point,
To begin with, the point‘seems a bit academic, Suppose, for simplicity,

that we presume our system gets raw input in the form of ones and zeroes,
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(This is still consistent with our assumption that intermediate signals ﬁay be
continuous, ) Then for each Xt,i' our Rakkzxmxxerm CRCM will still produce

an iE,i which varies from zero to one; we could interpret it,i as

a probability, and plug into our CRCM an error function which

encourages 2£,i to equal the probability of Xt,i being "one",

(To minimize E((X, .-X )2), for example, we set ﬁt i=p(X£ 1).
? ?

t,i t,1
A question of minimizing p(l—&)2+(1-p)i2.) Then, to conjure up
possible Xt 30 We could simply "throw the dice" for each i,

?

A
based upon xt,i

However, life is not so simple, A simple example will show why this approach

as the probability of firing a one,

will not work, and why its failure is of =mmxmk enormous importance,

Suppose that our input field consists of a simple 2 X 4 visual grid,
Suppose that the visual field only takes on two configurations, in practice,
In configuration A, there is a black square (1's) in the top 2 X 2 part

of the field, and a white square (0's) in the bottom, In configuration B,
the white square is on top and the black square is on the bottom,

At each time, t, the field takes on a new configuration, either A or B,
with equal probébility and with no regard for its previous configuration,

Using the pattern recognition systems above, every cell in the grid will be given

as_an ﬁL,i of 50%, at all times, If we "throw the dice” for each of these cells
separately,the odds would be more than a hundred to one against our

predicting either configuration A or configuration B, (Probability

equals (%)8+(%)8=1/128.) Clearly, this point is more than academicj

the main task of human vision is to select out objects which are stable

in themselves, but which change =mmmkw somewhat erratically in their positions

in our visual fields, Even if we could make a deterministic prediction of z%+1

based on all the data implicit in‘ik, it would be extremely difficult for

a system to learn how to make such a prediction unless it could make full use

of an intermediate set of predictor features, which are only enough to offer

stochastic predictions; in other words,; the deterministic recognition systems
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above may find it difficult to find a pathway g:; their initial ignorance
to their final perfection, because they may be unable to operate
effectively (and develop) in the intermediate zone of probabilistic knowledge.
This effect may explain the weakness of all adaptive perceptron devices to date,
(Footnote, of special interest to Prof, Deutsch: this effect may also
be relevant to the effectiveness of éocial perception in large organizations,
The ability to accept uncertainties, and to deal with them coherently,
may be essential to social learning and creativity.)
So: how do we account for this effect?
Formally, we have to account =m#i® for the fact that P(xt,i) is not
independent of P(Xt,j)' If we wanted to be simple-minded, we could set up
our network, not to give P(Xt,i) separately, but to give
P(Xy 1) P(Xt,z‘xt,13 ’ P(Xt,B\Xt,z’Xt,l)"‘ P(xt,n\xt,n-l'"xt,Z'Xt,l)'
To simulate ?l, we could simulate xt,l’ then )(t,2 in light of Xt,i'
and so on, until we had simulated all & the components of ii Given that p(f)
does equal the product of the conditional probabilities above, even when
its components are mutually &mé&mmdependent, this simulation process
will conjure up X's in accord with their actual probabilities,
To learn the conditional probabi{ity, P(Xt,i\xt,i-i"‘xt,l)' we could set up
a pattern recognition routine like those above, using‘iz_l ggg_xt'i_i through X_t’1

as inputs to predicting X In practice, it would be hopelessly extravagant

t,i®
to have a separate circuit for every input variable; it would also be hopelessly
slow to deal with one input after another, through such a long list.

To achieve the same effect in a more economical way, we will have to formulate
the issue in a more elegant way, However: it should be clear that there

is no way to account for the mutual dependence of the X, ., without

t,i

accounting for the conditional probabilities in one way or anotherj

we will need to have circuits topredict Xt 59 given other information about'i?.
1
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Let us go back to the simple idea of "minimizing an error funection,"
which we mentioned above, We didn't specify which error funection to use,
or why we should use such an approach, In classical statistics,
people have found a good reason to justify the choice of mean square error
as an error function: minimizing the sum of squares through time
turns out to be the same, in the limit, as iun maximizing the likelihood
of one's model being true, for linear Gaussian processes, However,
we are not dealing with Gaussian processes. The nonlinearity of our processes
is so pervasive, that we are better off thinking of our input as pure
information, codable into Zeroes and ones, in the paragraph above,
So: how do we apply the maximum likelihood method
to a simple (Markhovian) time series of zeroes and ones?
Suppose that we have a model, p(xt)=f(t,a).
("t", in this case, can cover all kinds of extra data; for now, however,
we are interested only in how to adapt the coefficient “al, ) Suppose that
we have a series of data, Xy from time zero to time T,

Then:

p(a‘{xt,t=o,T§) = p({x,,t=0,T}

y p(a)
/p({x,»t=0,TE)

=\:\jl(xtf(t,a.)+(1- _t)(lff(t,a)))Pth?.Ez())’rIj)
The term in the denominator of the right-hand term is the same for all‘a}
therefore, in choosing“a’ to maximize the likelihood of our model, we can ignore
this term, BRmg P(a) is really a distribution, representing the a priori
probability of any model, In general, in statistics, one ignores this term,
since its relative effect becomes negligible in time, and since there is no

philosephical reason to give a higher a priori probability to one "a" or another,
except to a=0,(Occam's Razor again,) In choosing the best nonzero value for "a",

we can delete p(a) (formally, set it to da), and then later send a garbage collection
routine back to see if we have found reason to set "a" significantly different

from zero; if not, we can delete the term in f which has "a" as its coefficient,
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and try another term to replace it, more or less at random,
n.n

So, for now, we can concentrate on finding the best nonzero value for "a",

which means maximizing:
T

TV (xf(t,2) + (1-x, )(1-£(t,2)))

We want to find an ;;;or function, e(xt,f), such that maximkzing minimizing
the sum of e through time is equivalent to maximizing the product above,
" Clearly, we have to take (minus) the logarithm of the term above

to achieve the equivalence:

e(xt,f) = - log(xtf(t,a) + (1-xt)(1—f(t,a)))
= -xtlogf(t,a) - (I-xt)log(l-f(t,a)) (as x, =0 or 1)

So: the error function is simply a joint entropy function !

To optimize our predictions, we simply minimize the entropy of our errors,
More precisely, we are trying to minimize the extra information content
required, above and beyond our predictions, to give the true value of E% Xy
throughvtime.

Now, let's go back to our problem of interdependent probabilities ini;t.

Our problem, precisely, was that the probabilities of Xt,i' gigggﬁfl_i,

were interdependent, In other words, the information content (entrupy)

of-;; as a whole, given‘fl_i, may be much less than the sum of

the entropies of its parts (the Xt,i)' (Footnote, of special

interest to Prof. Deutsch: Gestalt psychologists and political scientists
have often said that ,"The whole is more than the sum of its parts,"

condesk

The organization,of the total visual field, as a system, may be defined

as its theoretical information capacity, minus its entropy (disorder).

The theoretical information capacity of the whole will equal the sum

of the information capacities of its partsj however, given that its

entropy will be less than (or=) to the sum of the entropy of its parts,

Wwe may say, 3% quantitatively that the imfzwmmbdms organization content

of the whole will be more than (or =) the sum of the organization content

of its parts. It is much greater, at least, in the case of human perception, )
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In order to simulate‘i£,,given-f£_1, economic considerations dictate that

we simulate large numbers of variables all at once, not one after the other,
The only way to do this is by recoding our uncertainties about_ié, given'Xi_l,
into a set of independent variables, which we can deal with separately,
all at once, in simulating'? . In short, we wish to find a technique
-=>
to encode 7% (given xt-l) into a new vector,’ﬁk, of zeroes and ones,
whose entropy does equal the sum of the entropies of its parts,
We wish to make sure we can recodedﬁt and'it_1 back into'it, s0 that

we can simulate ?; by simulating all the components of'§£ in parallel

' . and recoding, The components of'ﬁt, unlike the elements of a simple

CRCM, would tend to represent unusual joint events in'§£ and'it_lg

they would tend to represent the unusual patterns and events

which disrupt the more predictable monotony of human vision,

In practice, this is exactly what Lettvin and Hubel have found in the higher
visual systems,of mammals and frogs -~ edge detectors, detectors of vertices
at special angles, and even "newness” detectors which respond to moving
objects which change their direction and velocity, A pattern recognition
system built on these principles will automatically select out

the most interesting features of its environment, for study by

higher-up systems in the brain, Systems of this type I call BRCM's,

for Bayesian Reality Construction Mmi@misy Modules,

Now¥ the technical details,

If we give ourselves a fairly free hand in selecting‘ﬁ; as a function
of"i£ and'Xl_l, we cannot be sure of finding a straightforward way to recode it
back into'i;. In general, we will have to use pattern recognition to try to
predict f; back from'ﬁ; and'Y;_l. Suppose that we define the "gross'ﬁt"
to be the combination of our original"ﬁ;, plus the information required
to give us'it back, item by item, from the proposed'f; we got back from recoding,

Giyen all of the information in "gross‘ﬂ£", we can get back ﬁ'f; exactly,
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simply by recoding'ﬁ into an estimated'ii and then correcting the result.'

t

cannot have less information content than does-i

-

Therefore, gross Rt +

-3
itself, given Xt-l'

entropy of the parts of gross‘ﬁ£ cannot be less than the entropy

‘Therefore, the minimum of the sum of the

of"?; given At-i' We can bring this sum of entropies down to &fmxikksxkhk= this
lowest possible minimum by converging on an'§£ proper with the

properties called for above: i,e, the sum of the entropy of the

components of'ﬁ; proper equals the entropy of'f; given€i£_1, while

the recoding process involves no error or entropy at all,

There is oné other way of minimizing the smmmE® entropy of the parts

of gross"ﬁt: if the errors of recoding are all independent of each other,

and independent of the components of K proper, and if the components of

t
.ﬁk proper are all independent, (Otherwise, the sum of the entropy of the
parts will be greater than the mmmxmf entropy of the whole, which in turn
is greater than or equal to the entropy-level we are trying to reach,)

So: we can set up a network with two mmm levels - ﬁté§(i;,f;_1) and
“i;ég(ﬁ;;§;_1)>- to be adapted like a CRCM, but with feedback (an error function tefm)
coming in from the entropy of each component of R and from the error of each
component offi. (Notice, when we estimate the ppobability of Xt,i’
controlled for'ﬁ;, We are, as promised, estimating a probability
controlled for knowledge about i;.) Notice that we are worried
about the entropy of'ﬁ;controlled for.ii_lg given that we are worried about
separating the components of'ﬁ; from each other, and not about separating
them from'it_l, we can get away with measuringAthe entropy of Rt,i
controlled for some funetion of-f;_i. In short, we can try to "predict"

Rt,i from information about i;-l’ and count in just the entropy of the error,

(This will work better, because R would often represent part of our error

1,1

in predicting i; from“i;_i; the requirement that R N be zero or one

t,
would force our system to develop contorted coding systems for these errors,

were it not for our little trick here,) We can even set up several layers of Rt 59
L
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so long as we do not go to our old extreme of having one layer for every
bit of input; this may be convenient in a network which would have

several layers of CLU processing anyway, Each layer could use the actual value

of Rt i's from previous layers, for use in trying to predict
?

its own Rt,j'
As with the CRCM's, we can avoid formal layering by using

time to define the layers, We can define speéial units, called Pyramids,

to care for one component of Rt,i each, In the bottom part of each

Pyramid, there would be a network to define the actual value of Rt,i;

the bottom part would have access to all information in the systenm

frommit andyik_l, both, In the top part of the Pyramid would be a circuit

to predict the & value of Rt,i; the top part would have access only to

information from'ii, and from Pyramids which have already released the

actual value of their Rt,i' (1,e, effectively, lower-level Byx Pyramids, )

At a certain time, dependent on the state of its inputs ( or on the

time since the beginning of the alpha cycle, or even on a signal from a central

coordinating system), the Pyramid would carry out two actions at once,

It would mawmmg compare its prediction of R against the actual value,

t,1
and store the entropy of the error, plus other details,
for distribution in the feedback part of the cycle; it would, at the same time,
reduce its Rt,i' for use by any other Pyramid in the system, Pyramids and CLU's
would be mixed together in a common network, with the same timing and the
same feedback problems as those of ‘a pure CRCM, Under our old
possibility three - a doubtful possibility = Pyramids could actually
record predictions and release Rt,i on each processing cycle of the systenm,
Under xmsxikk¥ikky possibilities two and one, xmd a Pyramid would limit itself
to remembering (and reacting to) the time when it gets a wave of inputs
from its top part; it would be like the CLU's in this respect,

When the feedback cycle gets back to our Pyramid, the Pyramid
(1ike a CLU cell) will receive one significant feedback - the total
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derivative of entropy elsewhere with respect to R the Pyramid itself

1,1}

will have generated R from an internal probability,q, generated

in the & bottom of the Byxamkd Pyramid, and will wetmém have also
retained p, the estimated probability of Rt N according to the

’
top of the Pyramid, g and p will be generated by CLU-type units

.y a zero/one variable,

within the Pyramid, It is unpleasant to evaluate Rt 3
9

by means of a derivative; however, there is no other reasonable way

for us to measure and 1limit the amount of entropy that passes through this
process, and it is impractical to measure the exact difference in entropy
caused by a discrete change in Rt,i' (If the nétwork using Rt,i were linear
life would be easier on both counts, But the human environment is not linear, )
It would be possible to make one small concession: the last cells before

Rt,i could pretend that the derivative of entropy with respect to

thelr outputs is constant, and use that to estimate the discrete

result of changing Rt 5 from zero to one or vice-versa, In any case,
1

each input to the top, Xj’ will receive a feedback:

9p 3E(p,q)

XK. ’
j dp
where E(p,q) is the entropy of observing a probability q when you

had been expecting a probability p:

1~ 1-
R = - § 200 & - $43) 205 {1

(A crude system could look directly at E(p,R but that would be

a waste of information,) Each input to the bottom, Yj, will receive:

da_,OE(pa) , JE*

}Yj‘ Daq ERt,i '
where the last term is the feedback input to the Pyramid, (Also, the initial
set-up of a Pyramid can be carried through, if necessary, by getting it
to duplicate exactly a higher Pyramid, exactly, if the errors of that higher

Pyramid correlate with those of other Pyramids on the same level,)
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This idea of Pyramid units is one of the best in this paper,
because I was not the one who thought of it., I reached the point
of seeing the need for an R vector, but I could not imagine
a practical way to carry through the idea in a normal biological system,
Then I looked at the Scheibel and Scheibel article in the Rockefeller
Neurosciences Study Program Volume II, The large pyramid cells of the
visual cortex fit the need above, exactly. Each such cell, usually
called a Layer V pyramid, reaches from the very top of the cortex
(of Layer I) down to almost the bottom (Layer VI), In between,
each cell has a long shaft, which can develop a graded spike of its own,
(Recent work in this area indicates that the spikes coming down the
shaft can vary continuously in intensity, while the final spike
that comes out of the cell body, at the bottom of the pyramid, is 1/0.)
The top of the pyramid, in layer I, receives new input only from the fibers
in this layer; Svengothai (sp?) has shown that these fibers are
almost entirely "recurrent collaterals", fibers branchingA;:i
from the main axons coming out of the cell bodies of nearby pyramids,
In only one of the other sources I read could I find a definite indication
of any other m@ cells sending axons to this area; the Eccles volume mentioned
above reported a group of strange 1little cells, unique in a number of ways,

inputting only from pyramid collaterals, and outputting to probably

layers I and II, These cells, as reported, would merely be accessories

to the pyramid tops in processing data which they are entitled to receive,
%;:;;; inputs from the thalamus, by contrast, go straight to Layer IV,

almost all a thick plexus of medium/small cells called Layer IV stellate cells,
Most of this input gets to the pyramids via synapses to the cell body

of each pyramid, in Layer V, (Scheibel disagrees, but Eccles and

Beritashvili and others appear to have overwhelming evidence against him,)

The medium~sized ® cells in Layer VI have direct access to layer IV inputs,

but they send their output fibers into the white matter underneath layer VI;
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these association fibers presumably come back into the cortex
on the same footing with fibers carrying new data,

" (One may wonder how the pyramids could get'§1_1 input in
this situation, But such input was only added as a minor afterthought
on page 31, anyway, If desired, such input could simply come from
memory of the output of other pyramids from kgmm the end of the cycle before;
this would work especially well if pyramids could integrate the input
they receive over the whole interval from one release to the next,)

Layers II, II and IV of the cortex are trickier to deal with,

because of ambiguous data; it is hard to say exactly where the
"top" of a pyramid ends and the "bottom"” befins, However, there
is little doubt that the upper inputs into the pyramid are integrated,
and the apical shaft begins to send its calculations down, above layer IV,
The cells in layers II and IIT are all small pyramids, which also get
their inputs from Layer I; thus inputs to the "top system”
from these cells would not contradict our theory, (Well, there are
also those strange little upside-down stellate cells, mentioned above,
and T am assuming that we are defining the boundary between
Layers III and IV according to the system commonest in the literature,)
Scheibel claims that the shaft itself receives input directly from
the sensory centers of the thalamus, from the opposite side of #gm the cortex,
and from the nonspecific nuclei of the thalamus, These claims, if true,
would merely tell us that the boundary between the "top" and the "bottom"
may be somewhere in the upper part of the shaft, But Scheibel's
claims about sensory input are doubtful, because of sources cited above
(the Eccles volume, for example, claims that the climbing fibers Scheibel

talks about tend to be intracortical fibers, according to degeneration experiments);

input from other pyramids on the opposite side of the cortex, passing
down and up again through the white matter below, sounds even harder to

validate, and would not be a fundamental problem anyway;

~



input from the nonspecific system of the thalamus is known to be central
in cortical timing mechanisms, and could be available solely to
tell the pyramid when to release Rt,i' Therefore, the simplest
explanation still makes sense: that the boundary between "top®
and "bottom" may occur at the place where a spike from the shaft
would meet the cell body,(Implying no stellate-pyramid contact on Layer IV,)
The cell bodies of these pyramids are very large, and capable
of carrying through the more complex adaptation routines
I have suggested above,

The' BRCM system proposed above has one other major advantage:
it is capable of "sleep," By "sleep,” I mean a process for adapting
the coefficients of a system at a special time, when the system is not
dealing actively with its environment, Normal CRCM coefficients,
and the coefficients of systems to saimwdmie define Rt,i'
have to be adjusted as part of a larger system, since their feedback
comes from a set of derivatives which would be changed quickly
(%,e. sent to zero) by the adaptation of other parts of the system;
it would be invalid to adjust all these parts, separately,
by means of past feedbacks, given this kind of interconnection,
However, the (top) subcircuits which predict the R, , of one pyramid,

based on'the Rt,j's of mmothers, do not produce any direct output at all,
except when our model is used for simulation, If a single pyramid

could make molecular records of inputs to its top, and of its g,

over a number of interesting cases, it makm could go back over

the most interesting cases at night, and adapt its coefficients quickly,
The cell would be able to adjust its input coefficients much more quickly
than it could in the daytime, because it could carry out one cycle of
adaptation for every cycle of its own processing, instead of following

the slow frequency of the alpha rhythm; also, it could focus its attention

on the cases of greatest interest to itself, by any number of chemical means
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which I am in no position to speculate about, Evarts, in the MIT
Neurosciences Volume II, has shown that V pyramids do loosen

their interrelations in deep sleep, that they fire

on the order of ten times the normal rate, and that smaller cortical

cells slow down at the =m same time,

IV, Other Hypotheses Studied

Before I close this up, I should make a few brief comments
about the rest of my work this year, (Also, I should apologize for
making this longer than expected; my handwriting seems to have grown denser, )

Back in 1965, when I worked on defining the philosophical basis
of pattern recognition, I came up with the idea of using Occam's Razor
to define the apriori probability of different ﬁodels ( the p(a)-type
£erms, which never disappear in Bayesian statistics), in a way which
would lead to some ® kind of "open-minded system,” A friend of Minsky's,
Solomonoff, published a similar idea in the mid-sixties, which Minsky,
at least, agreed was solid, This idea, applied directly to
pattern recognition, places severe demands on our systems,
There are only two ways to meet those demands completely:
(i) by a neuron adaptation system in which glial cells bind several
axons, dendrites, and even synapses, together, and force them to
behave in a similar way; (ii) by a chemical processing system, in which
large numbers of molecules pass from cell to cell,‘allowing local
information transfers on a large scale, and exploiting the domain of
quantum chemistry, None of these make much sense for mammalisn brains;
also, there is good psychological reason to suspect we do not have the -
abilities that would result, There are two ways to compromise
between these demands and the simplicity of the BRCM idea:
(i) Hyden-type associative memories in pyramidal neurons, perhaps
in the smaller pyramids of layers II and III of the cortex, layers

which exist in neocortex but not in primitive cortex; (ii) "families"
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of neurons, designed to deal with different objects of the
same kind or with specialized applications of a given action-schema;
these families may involve groups of pyramids from layers II and II,
clustered about one or more layer V pyramid, This is what I may have
to work on next,

In February and Maech, I spent a lot of time dealing with the care
and cultivation of schemas, Different schemas may still use a standard thalamic
coding system to describe themselves, The cortex may perform the WiM;1 function,
of describing the results of a schema, and also of proposing standaxd
subschemas, The limbic system may calculate jzlfrom Ihmxmmxkirakxoaky
data in the cortex, or at least JO of the results described, and may even help
in the basic reticular ®#em formation task of proposing different
subschemas from the standard ones, The reticular formation defines what is
an actual, engaged plan, versus what is hypothetical; thus the lower tegmentum
stifles the actions dreamed up by the cortex during sleep, according to the
MIT report above, and the reticular formation censors directly the output
of motor pyramids, The cerebellum is less interesting -~ a servomechanism
designed to smooth out motor actions, on the Howard/BRCM principles
which we g rejected as a central organizing zmzh® principle on grounds of
its short-sightedness, The corpus striatum would be a relic of the pxkmkkiws
precursors of the cerebral cortex, for schemas capable of engagement
but not of description,schemas subject to learning by experience but not
by simulation, The thalamus may be a kind of timing, switching and storing center
for the cortex, telling the cortex what to predict, telling different axzxx regions
of the cortex to adapt to different levels of abstraction, and initiating
brain rhythms,

Most of the work in caring for schemas comes from the utilitarian programs
which decide which schemas to use, and which provide gradual adaptation
for their coefficients, Simulation and experience provide two different ways
of adapting these coefficients; basically, I propose that simulation
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should be used in the beginning, and that experience should be used to

adapt an extra circuit to measure the bias of the models coming from simulation,

Similar bias systems are needed in dealing with schemas adapted to specialized

functions, Coherent dreams and Penfield~type memories both puzzle me;

even Xfxkkx in the hippocampus or mammillary bodies, no one cell could be

expected to construct such coherent memories, so another kind of

memory system is needed, involving some kind of avalanche of associations,
Interesting questions: how the same pyramids described above can take on

motor functions in other parts of the cortex, reacting to dmmxmEsxmfxyrEszNrE

the level of pressures towards action and inaction; what happens to recursion

when we create hypothetical description and prediction routines:

where we put the "globschema", the schema at the top of our lattice;

whether Lettvin's "sameness" cells in the frog colliculus have a lesson

to teach us about object-identity,
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