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Fran  a quick reading of a few exanples fran Ehpnelhar t ,  Hinton and 
Williaxns(wmW), sane scientists have concluded that backpropagation is a 
specialized n&bd for pattern classification, of little relevance to broader 
prublesns, to parallel ocnplting, or to our understanding of the human brain. In 
a series of papers in pmcess, I have questioned these beliefs, and praposed the 
develapnent of a general theory of intelligence in which backpropagation (in my 
1974 forrmlation [1,21) and Cargarisom to the brain play a central role. I have 
also pointed to a series of inten" * te steps and applications leading up to the 
constrraction of such generalized systems, including past applications to social 
science which in sane ways go beyond the work in AI as such. This paper will try 
to give a "ed mthnatical s l l ~ ~ n a r y  of that work (and hape that the papers 
cited and the talk clarify a few of the inwitable loose ends). 
begins by slnrmarizing a generalized fornulation of backpropagation, and then 
discusses ne-rk architectures and applications WfLich it apns up. 

This paper 

A G E N E N U Z E D  -1m OF BXKPRCWAGATICN 

Thanks to David Parker (*se mrk on backpropagation also preceded RHW), 
sane of you may knm that in 1972 I presented my Harvard tksis oomnittee w i t h  a 
neuron-based form of backpropagation nearly identical to RHW's. carmittee 
h r s  ruled that this algorithn wmld be interesting as a seminar paper Cut not 
jlrportant eTyxlQh to warrant a F k D .  The idea was indeed sinple and untested at 
that time, lxlt sinple ideas can be importan t. This paper will present otkr 
sinple ideas which may be even more important than backpmpagation. 

For my tfresis, I refomulated backpropagation as a general mthd for any 
feedforwards netwwk of functions. The mathmatics and neural applicatians were 
later discussed in sane detail at a conference similar to this one in size and 
visibility[2], and cited elsewhere. 

In my notation, an RHW network htplements two equations: 

neti w. s 
T 
11 

t=l 

("etj 

f j=l 
(t) - 

where t is the pattern n h r  (aut of T patterns), s is the sigmoid function, and 
where the first m aqonents of "net" are inputs and the last n canp(3IlRnts 
represent predictions, in effect, of the target values y.(t). gy fixing some Wij 
to zero, one easily lxzild~ sparse networks which are J efficient to use on 
parallel amputerS. The goal of badcpmpagation is to adapt the weights Wij so 
as to minimize Error, for given values of the inplts and targets across all 
patterns t. 

* Deep thanks to David Parker and Rich Sutton, -se help and encouragement made 
this possible. 
detail as NSF ProgrmnManager for Neumengineering I&EII this paper is presented. 
This paper does not necessarily reflect official views of either agency. 

Equation 1 is a special case of: 

Thanks also to DcE for letting me write this in anticipation of a 
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xi (t) = fi (xl (t) , ,x (t) ,x(l) , . 0 Igt-1) ,w,t) , i=m+l,N+n (3) i-1 
where 
and x(t) is the vector formed by xl(t) through 
3 and 2) axe special cases of: 

is a vector of weights or parameters, fi is any differentiable function, 
%n(t). Equations 1 and 2 (or 

x = f.(x I j<i)? i = Mtl, N' (4) i i j  
where x. is an 

variables at all times, but eights as a l .  
d, WlO, n=2, -30 and 25 wights, the n h r  of total inputs wmld be 
MttNn-eight~145. Thus the first quantity which is calculated, net5(1) , WMiLd 
be rep~sented in equation 4 as x 
quantity calculated for the fir~t~~~patt& - would be ~ 1 ~ ~ ;  ne% (2) muld be 

tity calculated in the entire system across space and time, 
A M  YgUants the totdl m r  of inputs to the system - not only input 

For exaDlple, in an RHW E t  w i t h  

; net (1) muld be x147; net12(1) - the last 

so on. "Error" would correspond to , - - & g t w t y  

in practice w only med to keep track of Wch quantity 
ion4wmldbecun33ersatletouseifwe tokeeptrackofall 

wts calculated before which otkr  quantity. 
possible form for a feedforwards system of differentiable functions over a finite 
nllIliber of quantities. 

mre than the use of t k  
chain rule to calculate the derivatives of ~r ror  w i t h  respect to the weights in 
equations 1 ard 2, follckrlled by t k  use of steepest descent or ather methods to 
adjust the mights. This is true, in a sense, but the ordinary chain rule does 
not do the job in a straightfaward way. we have proven[l] a chain rule for 
"&red derivatives" which may be "arized for TYW as the "e rule: 

Equation 4 is the most general 

Critics have argmd that baclcprapagaion is 

where tlw, partial derivatims refer to the derivatives of the functions fi, 
qressed as s-le functions of their direct argrnaents, a l e  F-xi is 
the total (-1 derivative of the target variable (Error, 
w i t h  respect to x.. "0 adapt the eights in the RHW system, we need to knclw F - W. i j  
for all the heights. Equation~cannotbeinserted directly into a 
sinple ccnputer package, because it includes partial derivatives; haever, we can 
gemrate equations to plug in sinply ky wrking out the partial derivatives and 
substituting than into equation 5. 
calculated in the system (starting fran the quantity last calculated), and look 
for that quantity on the right-hand-side of t k  system equations. For each 
equation it appears in, we differentiate the equation w i t h  respect to xi, and 
plug that derivative into equation 5 (bearing in mind that "x " is the 
hand-side variable of the equation being differentiated). 
longer tutorial.) 
than N, appears only in the right-hand side of equation 2 
over the sunnation sign in equation 1,). 
neti in equation 2, and plugging into equation 5, we get: 

in this case) 

 re precisely, w consider each quantity xi 

left- 
j (see [3,41 far a 

For -le, in equations 1 and 2, neti(t), for i greater 
(because of the "N" 

Differentiating Error With respect to 

Likewise, net. (t), for j between mtl and N, appears cdy on the right of equation 
1. 
we get a partidl derivative of W. .s' (net. (t) 1; plugging into equation 5 ,  & get: 

Differentking net. (t) as expressed in equation 1 With respect to net. (t) , 
13 3 
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N+n 
7 

F-net.(t) = 
3 -x Likewise: 

t 
F-wij - 

F-neti(t) * W. .SI (net. (t)) m ( j $ N  (7) 13 3 
i> j 

F-neti (t) s (net. 3 (t) ) (8) 

The backwards equations, 6 through 8, are essentially identical to the RHW 
formulas, when steepest descent is applied to  the derivatives F W. . . 
adaptation can be done on a batch basis (adding up the whole 6 ']in equation 8 
before moaifying the wights), on a pattern basis (adapting after evaluating each 
pattern t, and cycling through al l  the patterns) or on a real-tim basis (cycling 
thmugh each pattern only once, i n  real t b )  . 
zem, to  make the net sparse or efficient to  irrplement on a parallel -ter, 
then equation 7 will inherit the same sparsity or suitability. An analog 
inplementation would merely require a modulation/timing system, to  enforce 
alternation between forwards seeps and ba- sweeps. 
order" m-1 synapses of the cerebral cortex seem to involve this kind of 
modulation, rather than highemrder logic units[Sl.)  

The 

I f  sane wights were  fixed a t  

(In fact, the "second 

Equations 1 and 2 represent a standard supervised learning situation. 
define the input variable x .  (t) as s(net. (t)), for j betwen 1 and m, then these 
t m  equations give d a recipe 8r to predict y(t) as a function 
of x(t) . A statistician would say that ~badcpropagation is a special case of 
nonlinear least squares[6], a very well-shdied method, with the restriction that 
the model is only all- to  use certain functional fonns (sigmids). Sane argue 
that this arbitrary restriction "frees us" fran the old econaaetricians' problem 
of figuring out what functional form to  use; haever, it would be more accurate 
to say that t h i s  otherwise arbitrary restriction can be convenient when caping 
with system so -lex that w have little apriori knuwledge about wh ich  
function to  choose. My version of backpmpagation allm the use of any 
differentiable function, and provides lw-mst derivatives which can be input to 
methods more efficient than steepest descent [6] . 

In order to  learn useful features, without enforcing a set of arbitrary 
targets y(t), many researchers have used a double-layer architecture which w may 
syntmlize as x(t)  -+ ~ ( t )  -+ Et<t). ~n other WO&, they set y. (t) i n  equation 
2 to  be x. (tl-itself, 
s-lest 'case, they set M k ,  where k is much smaller than m, and fix W. . to be 
zero whenever i N and j m; in other mrds, the calculated ccmponents130f a 
form t w o  layers, in-& the upper layer (which predicts x(t) 
solely of the lwer layer, which in turn calculates an intermdiate vector R ( t )  
(made up of netmtl through netmtk), which hopefully represents condensed f e h r e s  
of the original inputs. There is an analogy here t o  factor analysis -- 
a very cartmn statistical method -- but the neural net approach is nonlinear 
while factor analysis is not. A simple generalization of this approach wuld be 
to lengthen y t o  include both x and sane classifications of interest. 
this architecture is a special-case of equations 1 and 2, the RHW formulation of 
backpropagation can be applied to  it directly. 

robotics -- I would reccmnend instead a triple-layer architecture, which I wuld 
symbolize (in minimal form) as x(t) and E(t-1) -+ R ( t )  -+ fI(t+l) and "xt). 
 his is the same as the double-layer architecture, e&pt thaF the targez vector 

If we 

that the inputs and targets axe the sad. In the 

is a function 

Because 

For dynamical systems -- as in speech recognition, t b v a r y i n g  imagery or 
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is lengthened to  include -- both x( t )  and R ( t + l )  , and g(t-1) is available as an 
input at time to In this 
case, the vector R( t )  need not be less than 5 i n  dimension, because it may 
represent "hidden" or "filtered" variables based on earlier time-periods wfiich 
are not observable as functions of x (t) AS a practical mtter, of course, it 
muld probably be best to build up &e aimensionality of 
by first learning a few key caqmnents and then adding a few mre, etc. 
derived in this way are more likely to  represent basic, dynamic invariants or 
underlying features of the dynamic system. 

This triple-layer architecture is a slight rephrasing of the "3-Net 
Architecture" discussed i n  a recent paper [7] which evaluates what has been 
learned fran extensive shdies of statistical theory and practical applications 
aimed at the problems of forecasting and the causal mdelling of dynamic systems. 
This neural architecture (first  proposed in 1974[11 and further discussed in 
1977[81) incorporates key ideas from theseries analysis and p s y ~ l o g y ,  which 
have been tested and proven many times over. 
science forecasting studies have sham that scam versions of this architecture 
lead to far less error, i n  forecasting dynamic systems over time, than does a 
naive amhitecture which tales x(t)  as inplt and z(t+l) as taryets. To achieve 
maximum inprovement, hsever, e t i o n  2 rmst be rephced by a wight& sum of 
error like: 

(9 1 

(Thus equation 2 mula have j run fran 1 to  n=nttk.) 

in an inc-tal way, 
Features 

Similation studies and social 

Error = pi + mightj * (yj(t) - s ( m h j ( t ) )  2 

t=l j=l 
Procedures for choosing weight have been developed and tested for social science 
applications, but for true sigmid netwdcs[7] there is a lot of roam for further 
research and experinmtation. 

The three-net architecture is 
Therefore, m need to spell out a few more details to specify h w  t o  inp1-t 
it. First, ME must w r i t e  out the equations of the feedforwards system inplied by 
our discussion above. ~b begin w i t h ,  we add the equation: 

a special case of equations 1 and 2. 

(t) = net&h+i(t-l), i = l t o k  (12a) 

*re the f i r s t  m-k canponents of the netmrk represent the x(t)  inpzlts, the next 
k represent the vector g(t-1) used as an input, and equation-12 copies over the 
values of R( t -1)  fran where it was initially calculated (assuming h hidden units 
betwen h- inputs and the calculation of R ( t )  ) . We d i n e  this equation w i t h  
equation 1, under the understanding that WT w i l l  be zem for i greater than 
ntth+k and j less than ntth (al-h this 'j restriction can be weakened[71) . 
Finally, ve add this t o  a modification of equation 9: 

= k k + i  

t=l i=1 

t=l j=l 
Now that vie have specified the equations of the feedforwards system, it is a 
straightfomards exercise to  apply equation 5 to the system carposed of equations 
12a, 1, and 12b to  generate the ba- equations to calculate a l l  the 
derivatives. To do this, w proceed exactly as we did w i t h  equations 1 and 2 t o  
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derive 6 thmugh 8. (See [3,4] for very detailed illustrations and explanations 
of this procedure, including time-lags, based on practical applications at DOE.) 
The resulting recurrence equations must be applied backwaxds in tim and 
backwards across neurons, both, but the required calculations cost about the same 
as it does to run the original system in forwards time, exactly as with 
conventional backprapagation[9]. (see the Pspenaix for details of this exanple.) 

In actuality, I used exactly this kind of backpropagation through a 
recurrent system to minimize least square e m r  in rrry very first applications 
test of backpropagation in 1974[1,81. This application was inplemnted (and 
published/doc"nted) in an MIT version of the Theseries Prooessor (TSP) 
software pa-. Our earlier mrk also includes derivative propagation thmugh 
a doubly recurrent system[91, including both lagged rmxmnce and 
simultanems-th remmene (which can be applied to continuous dynamic systems, 

principle, equation 12b assunes a noma1 error distrhtion, and should be 
adjusted slightly to a m t  for the zem-to-one range of the sigmid function. 

This kind of derivative calculation fits very nicely with batch learning, 
and can even be used w i t h  pattern learning (in badwards time), but forwards-time 
real-th systems like the brain cannot perfonn these calculations exactly. 
Still, there are ways to aFproximate these calculations in a real-time system, 
which have remarkable biological parallels[8]. Even though backpropagation is 
not yet p m w n  in the brain, it is not yet d i s p x "  either. For one thirvg, one 
cannot yet rule out Frwd's Wry that "psychic energy", a chemical badcflcrw 
(which could inplemnt backpropagation, if fast emugh for sane chemical species) 
drives the adaptation of synapses. 

el- 'cal inhrmatim forwards and backwaxds, as fast as would be needed. 
In general, our f-rk leads to many testable hypotheses about the brain, 
elaborated on in the papers cited here. 

ala Grossberg and Hapfield, mbedded within a ti"3dula ted system). In 

Furtkmnre, recent studies have sham that 
-ts of the microskeleton in many cell types can carry mechanl 'cal and 

Both for the sake of accuracy and for the sake of better real-tim 
convergence[lOl, more research is needed into ways of blendinq backpropagation 
and content-addressable "ry as fonmlated by Kohonen[lO]. - especially continuous-tim forrmlatians - axe important to analog 
inqlementation, but vie also need a better understanding of what to inplgnent.) 

A purist statistician would argue that least squares is 
handle supervised learning problems, including those of the prior section, 
because it cmveryes to the model which has the maximum likelihood of being true, 
which in turn should give the best forecasts. 
treats all models a-ly likely apriori. 
(like the usual W=X Y "appadmtion" of Kohonen) instead of regression 
coefficients gives rapid convergence to an inaccurate model, unless vie can truly 
guarantee a linear relation fran features to outputs and a true lack of 
correlation betwen all features in the universe being -led fran (which is 
highly unlikely when features are nonlinear functions of each other). 

Nevertheless, different d l s  are not equally probable apriori in practice. 
R. Solclanonoff and Abu-hbstafa have reminded us that there is no generic 
adaptation procedure which is right for all conceivable envi"ents (either :or 
maxi" accuracy or for fast convergence), and that we must invoke Occam's Razor 
and prior probability distributions to justify any kind of adaptation or 
intelligence, mecham 'cal or h m .  Based on similar considerations, and 
extensive errpirical tests, mainstream statisticians like m s t e r  and Efron now 

(Other formilations 

correct way to 

"Likelihood," by definition, 
Using correlation coefficients 

- 
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advocate "ridge regression," which is easily generalized to nets by dfying 
equation 2 (or 9 or 1%) to: 

(13) 

When steepest descent is 

t KiWij 2 I E' = Error + K wij orError+ 

and otherwise continuing as in the preceding section. 
applied with a fixed learning rate, and K is small ,  this yields the well-knm 
"decay term" which has often been tried -- to little effect -- as a way of 
speeding up the convergence of backpropagation. 
inputs is large relative to the n W r  of pattems, ridge regression requires 
that we use much larger values of K, for the sake of accuracy, 
of convergence. As K goes to infinity, the results approach Kohonen's method (to 
within a mure scalar factor). 
found that large values of K tend to stabilize the weights relative to changes in 
the pattem set; haever, it is essential to add a kind of global weight to each 
neuron (i.e., set output to s (global-weight*net) ) , where the global weight is 
kept out of equation 13, to get the scalar factors right. 
convergence have been &est so far, but I have yet to test alternative 
algorithms[7,10] which approach Kohonen's solution procedure as K goes to 
infinity. 
and approximate, but converges in one pass without using backpropagation per se.) 
In general, the human ability to learn frcan a single instance e t 0  assimilate 
memries later on into a mre rule-based causal understanding underlines the 
importance and potential of this kind of blending. 

Ultimately, we will have to r d r  that "supervised learning" is really 
two different classes of problems (based on different probability distributions). 
In one case, discussed above, we are minly trying to forecast new situations, 
and - even with equation 13 added - the backpropagation approach seems best. In 
the other, we only try to recreate past situations. 
d i n e  - both capabilities, so that the predictive network can be adapted both to 
current experience @to -red experience. Parallel adaptation to and use 
of multiple experiences my even be possible to s ~ n e  degree, especially in a deep 
sleep kind of m e .  If so, then human adaptation m y  be more like batch learning 
than one might have guessed at first. 

In DOE applications of steepest descent and related methods, we have 
generally achieved convergence in 10 to 40 iterations, using batch adaptation 
with an adaptive learning rate and carefully-designed ''scaling factors" [3,41 
(which yield different learning rates for different weights). 
for the EIA Quality Assurance Division[l2], I suggested a few approaches for 
using adaptation to derive the scaling factors, but I have not carpared these 
approaches to others suggested by Sutton, Parker, and my Ph.D. thesis[l]. 

the importance of borruwing methods fran numerical analysis (and cited 1121) to 
adapt neural networks, which are really just a special case of generalized 
functional networks. Since Watrous' paper here last year, the neural net 
cumunity is well aware that any method to minimize a canplex function can be 
applied to neural netmrks. 

What kinds of numerical Ethods are mst useful with larye-scale, sparse 
problems -- the kind of problems represented by neural nets? 
Schnabel[6] cite papers on conjugate gradients as the most promising approach to 
such problems, including a paper by Shanno[lSl. 
U.S.Nava1 Academy, in a review of our use of backpropagation at DOE[3,4], also 
recomnended that we look more closely at conjugate gradients. 
basic methods, like Fletcher-Reeves and Polak-Ribiere, which are basically as 

Nevertheless, when the nuber of 

for the sake 

In tests with nets on a FC at my hame, I have 

Benefits to 

(I have also developed a continuous-tim version[lO] which is crude 

An ideal system would 

In a 1981 review 

In recent papers on building intelligent systems[2,9,13,14], I have stressed 

Dennis and 

Charles Mylander of the 

Shanno describes 
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fast and cheap as the similar "mJrrentun" method of RHW, hut far more effective 
(at least in "izing quadratics and solving linear equations) . 
proposes ather methods, also O(n) in cost, which he claims are far mre rabust in 
dealing with ccmplex, nonlinear problems. 

fu l l  Newton's methods but d i m a g e d  by the high storage costs. Hmever, my 
previous review[lZ] discussed a method by Bank and Fbsie[16] which all- a full 
Newton's method at O(n) storage cost. 
equations FE, their "d shply requires that 
econanically for an arbitrary vector x, *re H is the Hessian (d derivative 
matrix) of Error with respect to the kights. 
vectors can be calculated at o(n) cost[11,2]. 

Shanno 

David Parker tells us that the neural net cannunity is also interested in 

Given h a m  methods to solve linear 
can calculate Iix 

In 1979, I pointed out that such 
In this approach, we define: 

and treat the cunbination of equations 1, 6, 7, 8, and 14 as a single 
feedforwards system of equations to calculate the target z. we can apply the 
chain rule for ordered derivatives to this entire systan to calculate the 
derivatives of z with respect to the wights, derivatives which equal the 
contents of Hv. (See Pspenaix for a few mre details.) "erica1 analysts[6] 
have develom- m e t e  to de& with the trust region prcblarr~ of Newton's 
methods, problems which  are also present, but mre concealed, w i t h  the simpler 
ItlethodS. 

All of these me- have been exhaustively tested over conventional 
"rid problems (i.e. batch problems, such that batch leaming might 
outperfom pattern learning sanetimes until we adapt these methods) , but there 
are a variety of ways to adapt them to pattern learning, to approximate then, 
d i n e  them, and cut comers as u l n e l l .  For -le, adaptive scaling factors 
could be incorporated in the "preconditioning" matrices of various conjugate 
gradient methods, and related to standard emrs as defined by statisticians. 
Pattern learning has a relation to both SOR methods and preaxdtioning. 

is a lot mre research to be done. 
Everything I have seen so far on these lines is qui te  pranising, but there 

RE- LEARNING, OFTIMIZATION, RCWI'S AND BRAINS 

One of the key applications of AI is in designing system which & -thing -- take avert action -- like mbots and brains. At last year's conference, 
Kawato et a1 gave an inpressive paper, skwing h m  a biological analysis by Uno 
involving optimization aver time leads to an adaptive robot which already 
ccmpares well w i t h  anything in the mainstream robotics literature. John J. Craig 
of Stanford has recently written books wfiich represent the best of the mainstream 
work in robotics; fran these books, it seems clear that robotics are a major 
near-term target of opportunity for neural networks, if we can d i n e  
straightforward causal nodelling (as discussed in the previous t w u  sections) 
along with capabilities for optimization over time. 
challenge is to take action so as to minimize a cost function or, equivalently, 
to maximize a utility function, over time. 
should rmstber that neural networks are probably fully capable of reproducing 
the worst nightmaxes of science fiction, if we are not careful. 

"reinforcement learning" than in classical supervised learning or unsupervised 
learning, because neither of the latter t w o  is really plausible as a model of 
natural intelligence. In the sinplest versions of reinforcemnt learning, the 

Mathmatically, the 

As an ethical matter, haever, we 

In a similar vein, cognitive psychologists have sham more interest in 

1-349 



system mts a masure of reinforcgnent (or u t i l i t y  U) which it f i r s t  tr ies to 
predict as a function of other variables, including both sensory inputs x ( t )  and 
mtor control variables u ( t )  .  his is a straightforward supervised leaiking 
pdlern, where u ( t )  is 6 target and x( t )  and u( t )  are the inputs.) A secondary 
network or action n e m r k  is also set @, whi&-inputs z(t) and outputs g(t) . To 
adapt the parameters of the action ne-rk, one focuses attention on the entire 
twwampnent ne-rk going fran s(t) to u(t) and fran there to a prediction of 
U ( t )  ; one uses 

adapts them aocordingly. Barto, Sutton and Anderson, as ell as myself [14,151, 
have eqhasized that th is  version leaves out the crucial problem of maximizing 
over t h ;  v e  have also discussed a t  length the idea of u t i l i t y  " i za t ion  as a 
paradigm for human intelligence, both from a biological[13,171 and 
h d s t i c [ l 4 , 1 8 ]  point of vi-. 

Sane carpxter scientists have questioned our continued tendency to go back 
to biological and pqchological analogws and citations. Hmmrer, this kind of 
cross-fertilization and reverse engineering is what got this field started, and 
it wwld be a serious mistake to  abandon it nw. Overspecialization has 
led to  too nu& reinventing of the wheel already. In fact, one might even argue 
that the greatest long-term benefit of th is  research - including the m s t  
mathmatical m r k  - wmld be in klping hunans to understand thenselves a little 
better. 

&propagation thmugh the en t i re  netwxk to calculate the 
derivatives of IF (t) w i t h  respect to the weights i n  the action network, and one 

In any went, the problem of cptimization over tinre is relatively sinple 
when we have a predictive mpdel an3 do not acanmt for randkm factors. We have 
had e results w i t h  backpmpagation here in a practical applicatian, involving 
the main nudel used by the Energy Infomation Administration in its official 
forecasts[3,4]. The key i b  was to define the f- systen as the model 
itself (as i f  exactly tme) plus a u t i l i t y  function, across t h .  
We then used -tion to calculate the derivatives of total uti l i ty  across 
time w i t h  respect to the action variables a t  a l l  tines. we adjusted the action 
variables i n  aooord w i t h  these derivatives, to  arrive at an optimal schedule of 
action. Based on this approach, ve are nuw looking a t  a -scale 
optimization prablem which includes outcarres whose probabilities are 
projected by a fuzzy inference system; because these probabilities are continuow 
furactions of each ather and of amtinuow input variables, we can still apply 
equatian 5 (or its generalization to similtaneous systms[9]) to finding * 
optitnal actions. ~n a true stochastic problem, a mre 
required[13,14], based on an effort to approximate dynamic prograPnning. 

I have proposed three major designs, of w i n g  carplexity, for the 
stochastic uptimizatian probh[2,14]. Much mre research is needed to test and 
tuxler- t b s e  designs, though the success of related Itlethods used by Barto, 
Sutton and *sen leads ne to expect god results. All three designs require 
that we adapt a "strategic assessment" "k, anahgous to the "adaptive 
critic" of Barto, SUttoDl and Anderson. ~n the mst eleanentary approach, th is  
netwrk wmld input both x(t)  and u ( t ) ,  and output J(t), a measure of the overall 
strategic benefit of the -&rent shation. 
adapt this -k, setting the target &x J(t) to be J( t+l)+U(t+l)-vO,  where 
J(t+l) is treated as a amstant when w adapt the netwrk for t b  t and where U0 
is a constant threshold term also to be adapted. (U0 is inpartant to prevent 
divergence in situations - like those of living oryaniatrs - where there is no 
clear tenmm ' tion time, and reinforcement is received thraughout the process.) 
Then, to adapt the d g h t s  i n  the action n e w r k ,  we would consider the entire 
two-layer feedforwalxls network frnm x(t) to  g(t) and frnm z(t) and g(t) to J(t) t 

solution is 

It wuld use Supervised learning to 
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w e  would use backpupagation through this entire netmrk t o  calculate the 
derivatives of J w i t h  respect t o  the weights in the action netmrk, and adapt 
those weights in accord w i t h  these derivatives. 
exploit the availability of a netmrk to make predictions (or stochastic 
shlat ions) ,  like those discussed i n  the previous tm sections; th is  W d  
enhance the system's capabilities, especially in dealing w i t h  d i n a t i o n s  of 
events which have never occurred in the past, and it wuld reduce the value of 
allwing u(t) as an input to the J(t) netmrk. 

In wnventional "adaptive" robotics, robots often adapt by virtue of the 
fact that u ( t )  is a function of x( t ) .  The approach here canbjnes that kind of 
adaptation-with adaptation of the- weights which give that function. 

The mre advaned designs (which are much mre plausible as models of the 
human brain[l31) require a prediction netmrk, and make fu l l  use of the 
cause-and-effect relations inplied by that netmrk. In the main method, GDHP, 
we t ry  to minimize the sum of the squares of the derivatives of 
J(t+l)+U(t+l)J(t)  w i t h  respect to the inputs of the J network, added up over the 
inputs. The derivatives of that error measure - w h i c h  itself includes 
derivatives - require the calmlatian of second der iva tKcala la ted  by the 
procedure given in the previous section ( discussed in [2,131, along with a 
variety of details on these methods and canparisons w i t h  experimental evidence 
fran -siology) . 

This scheme can be d f i e d  to  
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APVEM)M: AFPLIWICN OF npuATICN 5 TO EXMELES GIVEN IN THIS PAPER 

For the 3-layer architecture in dynamic mdelling, we use equations 12a, 1, and 
12b to define the feedfoxwards system to be differentiated. 
be calculated in that system, prior to the target variable (Error) 8 is neti(t) 
for i>Niin-k, which appears on the right-hard side of equation 1% for t 
less than T. Differentiating equation 1% With respect to such neti(t) , and 
plugging into equation 5, we derive an equation for such i: 

F-IE!&~+~ (t) = Weighti (s 

The last quantity to 

R (t) - s (netei (t+l) s' (neLk+i (t) 
(15) 

The next to last set of quantities are neti(t) for Ntxn-k? i> N, which appears on 
the right only in equation 12, yielding 

(16) 

the follawing for all t for such i: 

F-IE~N+~(~) = weightix * (s(nebi (t) - xi (t) * s' (nehi(t) 
With net. (t) , for NI i> m, we still get equation 7, except for i between mth+l 
and mth+k and t less than T; for such units, we add the tem F-neti-h-k(t+l) , 
which results f m  differentiating equation 12a. 
equation 8 still applies, as before. 

Finally, 
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For the second derivative calculation described above, we differentiate the 
system mde up of equation 1, 6, 7, 8 and 14, with "F " changed to "G 'I to avoid 
diguity. The last quantities calculated in the sysTem are G - wij, U& in 
equation 14; when we plug into equation 5, we get: 

F-G-Wij = xij (17) 

T h  mxt to last quantities are G - neti(t) for all i, a c h  appear on the right 
both in equations 7 and 8. Applying equation 5, we get: 

(18) 
F-G-net. (t) * W. .s' (net. (t)) 

3 1 3  3 
F-G-Wij s(net . (t)) + 

3 
i) j 

F -- G neti(t) = 

i)j 
Bear in mind that the leftmost "-&ion here will often be zem when there is no 
wight connecting 
the forwards direction, invoking it first for i-1, then ntt2, and so on. 
(We do not need to calculate F-G-neti for i less than m, because we did not 
calculate G-neti for such i in the 
and 14.) 

in almost all the equations: 

F_neti(t) = s' (neti(t) ) 

neurons. Also note that we have to use t h i s  equation in 

original system of equations 1, 6, 7, 8, 

The equation to calculate F-neti(t) is more q l e x ,  because neti(t) appears 

K- (F-G-Wji*F-net. (t) + F net. (t)*W. .) 
3 - 3  3 1  

+ S"(neti(t)) 2 F-G-neti (t) *F-net. 3 (t) *Wji 
i< j 

+ F -- G lreti(t) * ( (SI (neti(t) 

where the last tenn (laest line) applies only for i N, and where ei4(t) refers 
to s(net. (t) 1-y. 
as was &ne ea&& for equations 6 and 7 in the original system. 

Finally, to calculate the F - Wij in this system (which are the capnents of 
the vector Hx), - we get: 

F-Wij = ( F-G-netj(t)*F-neti(t)*s'(net.(t)) + F-neti(t)*s(netj(t)) 1 ,  

- ei,N (t) *s" (neti (t) ) , 

(t) . This equation is calculated for decreasing i, 

I 
t 

where the leftmst tenn is taken to be zem for jsm. 

These calculations have been checked, and the three-net equations have been 
tested in many other circumstances (using similar but more canplex equations); 
haever, while equation 5 in general has been thoroughly reviewed and verified 
over many years and many applications, I cannot canpletely nile out the 
possibility of a typgraphical error in this paper. 
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