BACKPROPAGATION: PAST AND FUTURE *
by Paul J. Werbos, 8411 48th Ave., College Park, Maryland 20740

ABSTRACT

Fram a quick reading of a few examples from Rumelhart, Hinton and
Williams (RHW) , same scientists have concluded that backpropagation is a
specialized method for pattern classification, of little relevance to broader
problems, to parallel computing, or to our understanding of the human brain. In
a series of papers in process, I have questioned these beliefs, and proposed the
development of a general theory of intelligence in which backpropagation (in my
1974 formulation [1,2]) and camparisons to the brain play a central role. I have
also pointed to a series of intermediate steps and applications leading up to the
construction of such generalized systems, including past applications to social
science which in same ways go beyond the work in AT as such. This paper will try
to give a condensed mathematical summary of that work (and hope that the papers
cited and the talk clarify a few of the inevitable loose ends). This paper
begins by summarizing a generalized formulation of backpropagation, and then
discusses network architectures and applications which it opens up.

A GENERALIZED FORMUILATION OF BACKPROPAGATION

Thanks to David Parker (whose work on backpropagation also preceded RHW),
same of you may know that in 1972 I presented my Harvard thesis cammittee with a
neuron-based form of backpropagation nearly identical to RiW's. Committee
menbers ruled that this algorithm would be interesting as'a seminar paper but not
important enough to warrant a Ph.D. The idea was indeed simple and untested at
that time, but simple ideas can be important. This paper will present other
simple ideas which may be even more important than backpropagation.

For my thesis, I refornmlated backpropagation as a general method for any
feedforwards network of functions. The mathematics and neural applications were
later discussed in same detail at a conference similar to this one in size and
visibility[2], and cited elsewhere.

In my notation, an RIW network implements two equations:

N
neti(t) = Z wij s(netj(t)), i=m+l1,N+n (1)
j& T n
- _ 2
Error = Z Z !s(yj (t) S(th+j(t)) (2)

t=1 F=1

where t is the pattern number (out of T patterns), s is the sigmoid function, and
where the first m camponents of "net" are inputs and the last n camponents
represent predictions, in effect, of the target values y.(t). By fixing same W, .
to zero, one easily builds sparse networks which are J efficient to use on 3
parallel camputers. The goal of backpropagation is to adapt the weights W.. so
as to minimize Error, for given values of the inputs and targets across all ot
patterns t. Equation 1 is a special case of:

* Deep thanks to David Parker and Rich Sutton, whose help and encouragement made
this possible. Thanks also to DOE for letting me write this in anticipation of a
detail as NSF Program Manager for Neuroengineering when this paper is presented.
This paper does not necessarily reflect official views of either agency.

1-343

xi (t) = fl (xl (t),.-. pxi_l (t) '_’5(1) goee li‘_(t-l) '!It) ’ i=mtl,N+n (3)

where w is a vector of weights or parameters, f; is any differentiable function,
and x(t) is the vector formed by xl(t) through 1 X (t). Bguations 1 and 2 (or
3 and 2) are special cases of: n

x; = £ (50 3<0), i=Ml, N (4)

where x. is any quantity calculated in the entire system across space and time,
andwhei"eMrepresentsthe total mmber of inputs to the system — not only input
variables at all times, but weights as well. For example, in an RHW net with
m=4, N=10, n=2, T=30 and 25 weights, the number of total inputs would be
M=nT'+n_weights=145. Thus the first quantity which is calculated, net, (1), would
be represented in equation 4 as X) 467 net_ (1) would be X, 477 net12 (1)~ - the last
quantity calculated for the first' Cpattefn - would be xjg1; nets-(2) would be
next, as X,-,, and so on. "Ermr"wmﬂdcorxespondtoxnt.néy_le.l_a_gtw‘;ty

. tion 4 would be cumbersome to use if we to keep track of all
these subscripts, but in practice we only need to keep track of which quantity
gets calculated before which other quantity. Bquation 4 is the most general
possible form for a feedforwards system of differentiable functions over a finite
nutber of quantities.

Critics have argued that backpropagation is nothing more than the use of the
chain rule to calculate the derivatives of Error with respect to the weights in
equations 1 and 2, followed by the use of steepest descent or other methods to
adjust the weights. This is true, in a sense, but the ordinary chain rule does
not do the job in a straightforward way. We have proven[l] a chain rule for
"ordered derivatives" which may be summarized for now as the recurrence rule:

, ﬁ ' N'-1 ')f.
F_xi = fN + E F_xj * _—Jd ’ i=N'-1,...,1 (5)
x; iy i 9x;

where the partial derivatives refer to the derivatives of the functions fi'
expressed as simple functions of their direct arguments, while F_xi is

the total (ordered) derivative of the target variable (Error, in ~ this case)
with respect to x,. 'Ibadapttheweightsinthemﬂsysten,mneedtolmowF_Wi.
for all the ‘weights. Equation 5 cannot be inserted directly into a J
simple computer package, because it includes partial derivatives; however, we can
generate equations to plug in simply by working out the partial derivatives and
substituting them into equation 5. More precisely, we consider each quantity X
calculated in the system (starting from the quantity last calculated), and look
for that quantity on the right-hand-side of the system equations. For each
equation it appears in, we differentiate the equation with respect to x., and
plug that derivative into equation 5 (bearing in mind that "x." is the * left-
hand-side variable of the equation being differentiated). J (See [3,4] for a
longer tutorial.) For example, in equations 1 and 2, neti (t), for i greater
than N, appears only in the right-hand side of equation 2~ (because of the "N"
over the summation sign in equation 1.). Differentiating Error with respect to
neti in equation 2, and plugging into equation 5, we get:

Fnet, (t) = (s(net;(t)) - y;_y(t)) s (net;(t)) i>N (6)
Likewise, net,(t), for § between mtl and N, appears only on the right of equation

1. Differentiatj.ng net, (t) as expressed in equation 1 with respect to net.(t),
we get a partial derivative of wijs' (nnetj (t)); plugging into equation 5, #e get:

1-344

N+n

Fnet(t) = Z F_net; (t) * Wss' (net; (t)) n¢igN (7)
Likewise: 3
RW = Z F_net, (t)s (net (t)) (8)
t

The backwards equations, 6 through 8, are essentially identical to the RHW
formulas, when steepest descent is applied to the derivatives F W,.. The
adaptation can be done on a batch basis (adding up the whole sum in equation 8
before modifying the weights), on a pattern basis (adapting after evaluating each
pattern t, and cycling through all the patterns) or on a real-time basis {cycling
through each pattern only once, in real time). If same weights were fixed at
zero, to make the net sparse or efficient to implement on a parallel camputer,
then equation 7 will inherit the same sparsity or suitability. An analog
implementation would merely require a modulation/timing system, to enforce
alternation between forwards sweeps and backwards sweeps. (In fact, the "second
order" axo-axonal synapses of the cerebral cortex seem to involve this kind of
modulation, rather than higher-order logic units[5].)

CAUSAL MODELLING/FORECASTING AND UNSUPERVISED FEATURE GENERATION

Equations 1 and 2 represent a standard supervised learning situation. If we
define the input variable x_(t) as s(net.(t)), for 3 between 1 and m, then these
two equations really give ul a recipe Or model to predict y(t) as a function
of x(t). A statistician would say that RHW-backpropagation is a special case of
nonlinear least squares[6], a very well-studied method, with the restriction that
the model is only allowed to use certain functional forms (sigmoids). Same argue
that this arbitrary restriction "frees us" fram the o0ld econometricians' problem
of figuring out what functional form to use; however, it would be more accurate
to say that this otherwise arbitrary restriction can be convenient when coping
with systems so camplex that we have little apriori knowledge about which
function to choose. My version of backpropagatiaon allows the use of any
differentiable function, and provides low-cost derivatives which can be input to
methods more efficient than steepest descent[6].

In order to learn useful features, without enforcing a set of arbitrary
targets y (t), many researchers have used a double-layer architecture which we may
symbolize as x(t) —% R(t) —» g(t) . In other words, they set y. (t) in equation
2 to be x,(t) itself, so that the inputs and targets are the . In the
simplest Jcase, they set N=mtk, where k is much smaller than m, and fix Wi. to be
zero whenever i N and j m; in other words, the calculated camponents Jof net
form two layers, in which the upper layer (which predicts x(t)) is a function
solely of the lower layer, which in turn calculates an intermediate vector R(t)
(made up of net 1 through net m+k) » which hopefully represents condensed features
of the original inputs. There is an analogy here to factor analysis —-—
a very cammon statistical method -- but the neural net approach is nonlinear
while factor analysis is not. A simple generalization of this approach would be
to lengthen y to include both x and some classifications of interest. Because
this architecture is a special case of equations 1 and 2, the RHW formulation of
backpropagation can be applied to it directly.

For dynamical systems -- as in speech recognition, time-varying imagery or
robotics —- I would recommend instead a triple-layer architecture, whicth would
symbolize (in minimal form) as x(t) and R(t-1) % R(t) —b R(t+1) and K(t).
This is the same as the double-layer architecture, except that the target vector

1-345

is lengthened to include both x(t) and R(t+l), and R(t-1) is available as an
input at time t. (Thus equation 2 would have j run | fram 1 to n=m+k.) In this
case, the vector R(t) need not be less than x in dimension, because it may
represent "hidden" or "filtered" variables based on earlier time-periods which
are not observable as functions of x(t). As a practical n’atter, of course, it
would probably be best to build up the dimensionality of R in an incremental way,
by first learning a few key components and then adding a few more, etc. Features
derived in this way are more likely to represent basic, dynamic invariants or
underlying features of the dynamic system.

This triple-layer architecture is a slight rephrasing of the "3-Net
Architecture" discussed in a recent paper[7] which evaluates what has been
learned fram extensive studies of statistical theory and practical applications
aimed at the problems of forecasting and the causal modelling of dynamic systems.
This neural architecture (first proposed in 1974[1] and further discussed in
1977[8]) incorporates key ideas from time-series analysis and psychology, which
have been tested and proven many times over. Simulation studies and social
science forecasting studies have shown that same versions of this architecture
lead to far less error, in forecasting dynamic systems over time, than does a
naive architecture which takes x(t) as input and x(t+l) as targets. To achieve
maximm improvement, however, equation 2 must be replaced by a weighted sum of
error like:

. 2
ZZ k Weight, * (v() ~ s(nety,(t)) (©)

t=1 j=1
Procedures for choosing Weight have been developed and tested for social science
applications, but for true sigmoid networks[7] there is a lot of room for further
research and exXperimentation.

The three-net architecture is not a special case of equations 1 and 2.
Therefore, we need to spell out a few more details to specify how to implement
it. First, we must write out the equations of the feedforwards system implied by
our discussion above. To begin with, we add the equation:

net . .;(t) = net . .. (1), =1tok (12a)

where the first mk components of the network represent the x(t) :_nputs, the next
k represent the vector R(t-1) used as an input, and equation | 12 copies over the
values of R(t-1) from where it was initially calculated (assuming h hidden units
between the inputs and the calculation of R(t)). We cambine this equation with
equation 1, under the understanding that Wl will be zero for i greater than
mthtk and j less than mth (although this J restriction can be weakened[7]).
Finally, we add this to a modification of equation 9:

T-1
. R 2
Error = %Z Z Welghtj * (S(“etmmj(tﬂ)) - s(nety k+j(t))
t=1 j=1 e mx (12b)
L X _ 2
%Zl Z Welghtj (xj (t) s(netN+j ®)
t=1 j=1

Now that we have SpSleled the equations of the feedforwards system, it is a
straightforwards exercise to apply equation 5 to the system camposed of equations
12a, 1, and 12b to generate the backwards equations to calculate all the
derivatives. To do this, we proceed exactly as we did with equations 1 and 2 to

1-346

derive 6 through 8. (See [3,4] for very detailed illustrations and explanations
of this procedure, including time-lags, based on practical applications at DCE.)
The resulting recurrence equations must be applied backwards in time and
backwards across neurons, both, but the required calculations cost about the same
as it does to run the original system in forwards time, exactly as with
conventional backpropagation[9]. (See the Appendix for details of this example.)

In actuality, I used exactly this kind of backpropagation through a
recurrent system to minimize least square error in my very first applications
test of backpropagation in 1974(1,8]. This application was implemented (and
published/documented) in an MIT version of the Time-Series Processor (TSP)
software package. Our earlier work also includes derivative propagation through
a doubly recurrent system[9], including both lagged recurrence and
simultaneous-time recurrence (which can be applied to continuous dynamic systems,
ala Grossberg and Hopfield, embedded within a time-modulated system). In
principle, equation 12b assumes a normal error distribution, and should be
adjusted slightly to account for the zero—to—one range of the sigmoid function.

This kind of derivative calculation fits very nicely with batch learning,
and can even be used with pattern learning (in backwards time), but forwards~time
real-time systems like the brain cannot perform these calculations exactly.
Still, there are ways to approximate these calculations in a real-time system,
which have remarkable biological parallels{8]. Even though backpropagation is
not yet proven in the brain, it is not yet disproven either. For one thing, one
cannot yet rule out Freud's theory that "psychic energy", a chemical backflow
(which could implement backpropagation, if fast emough for same chemical species)
drives the adaptation of synapses. Furthemore, recent studies have shown that
camponents of the microskeleton in many cell types can carry mechanical and
electramechanical information forwards and backwards, as fast as would be needed.
In general, our framework leads to many testable hypotheses about the brain,
elaborated an in the papers cited here.

CONTENT-ADDRESSABLE MEMORY AND CONVERGENCE

Both for the sake of accuracy and for the sake of better real-time
convergence[10], more research is needed into ways of blending backpropagation
and content-addressable memory as formulated by Kohonen[10]. (Other formulations
— especially continuous~time formulations ~- are important to analog
implementation, but we also need a better understanding of what to implement.)

A purist statistician would argue that least squares is the correct way to
handle supervised learning problems, including those of the prior section,
because it converges to the model which has the maximum likelihood of being true,
which in turn should give the best forecasts. "Likelihood," by definition,
treats all models asTequally likely apriori. Using correlation coefficients
(like the usual W=X'Y "“approximation" of Kohonen) instead of regression
coefficients gives rapid convergence to an inaccurate model, unless we can truly
guarantee a linear relation fram features to outputs and a true lack of
correlation between all features in the universe being sampled fram (which is
highly unlikely when features are nonlinear functions of each other).

Nevertheless, different models are not equally probable apriori in practice.
R. Solamonoff and Abu-Mostafa have reminded us that there is no generic
adaptation procedure which is right for all conceivable environments (either for
maximum accuracy or for fast convergence), and that we must invoke Occam's Razor
and prior probability distributions to justify any kind of adaptation or
intelligence, mechanical or human. Based on similar considerations, and
extensive empirical tests, mainstream statisticians like Dempster and Efron now

1-347

advocate "ridge regression," which is easily generalized to nets by modifying
equation 2 (or 9 or 12b) to:

E' = Error + K E wij2 or Error + E KiWijz, (13)

and otherwise continuing as in the preceding section. When steepest descent is
applied with a fixed learning rate, and K is small, this yields the well-known
"decay term" which has often been tried -- to little effect -- as a way of
speeding up the convergence of backpropagation. Nevertheless, when the number of
inputs is large relative to the number of patterns, ridge regression requires
that we use much larger values of K, for the sake of accuracy, not for the sake
of convergence. As K goes to infinity, the results approach Kohonen's method (to
within a murky scalar factor). In tests with nets on a PC at my hame, I have
found that large values of K tend to stabilize the weights relative to changes in
the pattern set; however, it is essential to add a kind of glcobal weight to each
neuron (i.e., set output to s(global weight*net)), where the global weight is
kept out of equation 13, to get the scalar factors right. Benefits to
convergence have been modest so far, but I have yet to test alternative
algorithms([7,10] which approach Kcohonen's solution procedure as K goes to
infinity. (I have also developed a continuocus—time version[10] which is crude
and approximate, but converges in one pass without using backpropagation per se.)
In general, the human ability to learn from a single instance and to assimilate
memories later on into a more rule-based causal understanding underlines the
importance and potential of this kind of blending.

Ultimately, we will have to remember that "supervised learning" is really
two different classes of prablems (based on different probability distributions).
In one case, discussed above, we are mainly trying to forecast new situations,
and - even with equation 13 added - the backpropagation approach seems best. In
the other, we only try to recreate past situations. An ideal system would
cambine both capabilities, so that the predictive network can be adapted both to
current experience and to remembered experience. Parallel adaptation to and use
of multiple experiences may even be possible to same degree, especially in a deep
sleep kind of mode. If so, then human adaptation may be more like batch learning
than one might have guessed at first.

In DOE applications of steepest descent and related methods, we have
generally achieved convergence in 10 to 40 iterations, using batch adaptation
with an adaptive learning rate and carefully-designed "scaling factors"[3,4]
(which yield different learning rates for different weights). In a 1981 review
for the EIA Quality Assurance Division[12], I suggested a few approaches for
using adaptation to derive the scaling factors, but I have not campared these
approaches to others suggested by Sutton, Parker, and my Ph.D. thesis[l].

In recent papers on building intelligent systems[2,9,13,14}, I have stressed
the importance of borrowing methods fram numerical analysis (and cited [12]) to
adapt neural networks, which are really just a special case of generalized
functional networks. Since Watrous' paper here last year, the neural net
camunity is well aware that any method to minimize a camplex function can be
applied to neural networks.

What kinds of numerical methods are most useful with large-scale, sparse
problems -- the kind of problems represented by neural nets? Dennis and
Schnabel[6] cite papers on conjugate gradients as the most promising approach to
such problems, including a paper by Shanno[l15]. Charles Mylander of the
U.S.Naval Academy, in a review of our use of backpropagation at DOE{3,4], also
recammended that we look more closely at conjugate gradients. Shanno describes
basic methods, like Fletcher-Reeves and Polak-Ribiere, which are basically as

1-348

fast and cheap as the similar "momentum" method of RHW, but far more effective
(at least in minimizing quadratics and solving linear equations). Shanno
proposes other methods, also O(n) in cost, which he claims are far more robust in
dealing with complex, nonlinear problems.

David Parker tells us that the neural net commnity is also interested in
full Newton's methods but discouraged by the high storage costs. However, my
prev:.ous review[12] discussed a method by Bank and Rose[16] which allows a full
Newton's method at O(n) storage cost. Given known methods to solve linear
equations g=Hx, their method simply requires that we can calculate Hx
economically for an arbitrary vector x, where H is the Hessian (second derivative
matrix) of Error with respect to the weights. In 1979, I pointed out that such
vectors can be calculated at O(n) cost{11,2]. In this approach, we define:

z = E F W5 * %4 (14)

and treat the cambination of equations 1, 6, 7, 8, and 14 as a single
feedforwards system of equations to calculate the target z. We can apply the
chain rule for ordered derivatives to this entire system to calculate the
derivatives of z with respect to the weights, derivatives which equal the
contents of Hv. (See Appendix for a few more details.) Numerical analysts[G]
have developed methods to deal with the trust region problems of Newton's
methods, problems which are also present, but more concealed, with the simpler
methods

All of these methods have been exhaustively tested over conventional
numerical problems (i.e. batch problems, such that batch learning might
outperform pattern learning sametimes until we adapt these methods), but there
are a variety of ways to adapt them to pattern learning, to approximate them,
canbine them, and cut corners as well. For example, adaptive scaling factors
could be incorporated in the "preconditioning” matrices of various conjugate
gradient methods, and related to standard errors as defined by statisticians.
Pattern learning has a relation to both SOR methods and preconditioning.

Everything I have seen so far on these lines is quite pramising, but there
is a lot more research to be done.

REINFORCEMENT LEARNING, OPTIMIZATION, ROBOTS AND BRAINS

One of the key applications of AT is in designing systems which do samething
-- take overt action -- like robots and brains. At last year's conference,
Kawato et al gave an impressive paper, showing how a biological analysis by Uno
involving optimization over time leads to an adaptive robot which already
campares well with anything in the mainstream robotics literature. John J. Craig
of Stanford has recently written books which represent the best of the mainstream
work in robotics; from these books, it seems clear that robotics are a major
near-term target of opportunity for neural networks, if we can cambine
straightforward causal modelling (as discussed in the previous two sections)
along with capabilities for optimization over time. Mathematically, the
challenge is to take action so as to minimize a cost function or, equivalently,
to maximize a utility function, over time. As an ethical matter, however, we
should remember that neural networks are probably fully capable of reproducing
the worst nightmares of science fiction, if we are not careful.

In a similar vein, cognitive psychologists have shown more interest in
"reinforcement learning" than in classical supervised learning or unsupervised
learning, because neither of the latter two is really plausible as a model of
natural intelligence. In the simplest versions of reinforcement learning, the

1-349

system inputs a measure of reinforcement (or utility U) which it first tries to
predict as a function of other varlables, including both sensory inputs x(t) and
motor control variables u(t). (This is a straightforward supervised learning
problem, where U(t) is the target and x(t) and u(t) are the inputs.) A secondary
network or action network is also set up, which inputs x(t) and outputs u(t). To
adapt the parameters of the action network, one focuses attention on the entire

t network going fram x(t) to u(t) and fram there to a prediction of
U(t); one uses backpropagation through the entire network to calculate the
derivatives of U(t) with respect to the weights in the action network, and cne
adapts them accordingly. Barto, Sutton and Anderson, as well as myself [14,15],
have emphasized that this version leaves out the crucial problem of maximizing
over time; we have also discussed at length the idea of utility maximization as a
paradigm for human intelligence, both fram a biological([13,17] and
humanistic[14,18] point of view.

Same camputer scientists have questioned our continued tendency to go back
to biological and psychological analogues and citations. However, this kind of
cross-fertilization and reverse engineering is what got this field started, and
it would be a seriocus mistake to abandon it now. Overspecialization has already
led to too much reinventing of the wheel already. In fact, one might even argue
that the greatest long-term benefit of this research - including the purest
mathematical work - would be in helping humans to understand themselves a little
better.

In any event, the problem of optimization over time is relatively simple
when we have a predictive model and do not account for random factors. We have
had good results with backpropagation here in a practical application, involving
the main model used by the Energy Information Administration in its official
forecasts(3,4]. The key idea was to define the feedforwards system as the model
itself (as if exactly true) plus a utility function, across time.

We then used backpropagation to calculate the derivatives of total utility across
time with respect to the action variables at all times. We adjusted the action
variables in accord with these derivatives, to arrive at an optimal schedule of
action. Based on this approach, we are now looking at a larger-scale
optimization problem which includes uncertain outcames whose probabilities are
projected by a fuzzy inference system; because these probabilities are continuous
functions of each other and of continuous input variables, we can still apply
equation 5 (or its generalization to simultanecus systems([9]) to finding the
optimal actions. In a true stochastic problem, a more camplex solution is
required{13,14), based on an effort to approximate dynamic programming.

I have proposed three major designs, of varying catplexity, for the
stochastic optimization problem{2,14]. Much more research is needed to test and
understand these designs, though the success of related methods used by Barto,
Sutton and Anderson leads me to expect good results. All three designs require
that we adapt a "strategic assessment" network, analogous to the "adaptive
critic" of Barto, Sutton and Anderson. In the most elementary approach, this
network would input both x(t) and u(t), and output J(t), a measure of the overall
strategic benefit of the current situation. It would use supervised learning to
adapt this network, setting the target for J(t) to be J(t+l1)+U(t+1)-U0, where
J(t+1) is treated as a constant when we adapt the network for time t and where U0
is a constant threshold term also to be adapted. (U0 is important to prevent
divergence in situations - like those of living organisms - where there is no
clear termination time, and reinforcement is received throughout the process.)
Then, to adapt the weights in the action network, we would consider the entire
two-layer feedforwards network fram x(t) to u(t) and fram x(t) and u(t) to J(t);

1-350

we would use backpropagation through this entire network to calculate the
derivatives of J with respect to the weights in the action network, and adapt
those weights in accord with these derivatives. This scheme can be modified to
exploit the availability of a network to make predictions (or stochastic
simulations), like those discussed in the previous two sections; this would
enhance the system's capabilities, especially in dealing with cambinations of
events which have never occurred in the past, and it would reduce the value of
allowing u(t) as an input to the J(t) network.

In conventional "adaptive" robotics, rabots often adapt by virtue of the
fact that u(t) is a function of x(t). The approach here cambines that kind of
adaptation with adaptation of the weights which give that function.

The more advanced designs (which are much more plausible as models of the
human brain[13]) require a prediction network, and make full use of the
cause-and-effect relations implied by that network. In the main method, GDHP,
we try to minimize the sum of the squares of the derivatives of
J(t+1)+U(t+1)~J (t) with respect to the inputs of the J network, added up over the
inputs. The derivatives of that error measure - which itself includes
derivatives - require the calculation of secord derivatives, calculated by the
procedure given in the previous section (discussed in [2,13], along with a
variety of details on these methods and camparisons with experimental evidence
fram neurophysiology) .

REFERENCES

1.P.Werbos,Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Ph.D. thesis, Harvard U. Cammittee on Applied Mathematics,
Nov. 1974.

2. P.Werbos,"Applications of Advances in Nonlinear Sensitivity Analysis" in
R.Drenick and F.Kozin eds., Systems Modelong and Optimization: Proceedings of the
International Federation for Information Processing. Springer-Verlag, 1982.

3. P.Werbos,"Documentation of the Gas Analysis Spreadsheet (GAS) As Used in the
Annual Energy Outlock 1987". National Energy Information Center (NEIC), EIA,
Department of Energy, Washington D.C. 20585 (202-586-8800), 1988.

(Should be free of charge; otherwise contact author.)

4. P.Werbos,"Maximizing Long-Term Gas Industry Profits in Two Minutes in Lotus
Using Neural Network Methods", draft, 1988.

5. S.Foote and J.Morrison,"Extrathalamic Modulation of Cortical Function",Annual
Review of Neuroscience, 1987.

6. J.Dennis and R.Schnabel,Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, 1983.

7.P.Werbos, "Learning How the World Works: Specifications for Predictive Networks
in Robots and Brains", in Proceedings of the 1987 IEEE International Conference
on Systems, Man and Cybernetics, Vol.l. IEEE Catalog No. 87CH2503-1. IEEE, 1987.

8. P.Werbos, "Advanced Forecasting Methods for Global Crisis Warning and Models of
Intelligence" ,General Systems Yearbook 1977.

9. P.Werbos,"AGeneralization of Backpropagation to Recurrent Networks, With a Gas
Market Application and Neural Implications", submitted to Neural Networks, 1987,

I-351

and revised and resubmitted per instructions in 1988.

10.P.Werbos, "Backpropagation Versus Content Addressable Memory: Applications,
Evaluation and Synthesis", draft.

11.P.Werbos,"Changes in Global Policy Analysis Procedures Suggested by New
Methods of Optimization",Policy Analysis and Information Systems.Vol.3,No.1,1979.

12.P.Werbos, "Solving and Optimizing Camplex Systems: Lessons from the EIA
Long-Term Model", in Energy Models and Studies, B.lLev Ed. North Holland, 1983.

13. P.Werbos,"Building and Understanding Adaptive Systems: A
Statistical/Numerical Approach to Factory Autamation and Brain Research",IEEE
Transactions on Systems, Man and Cybernetics, Jan.-Feb. 1987.

14. P. Werbos,"General:Lzed Information Requirements of Intelligent Decision-Making
Systems in SUGI 11 Proceedings. Cary, N. C.: SAS Institute, 1986. (A revised
version, ava:.lable from the author, is easier to read and contams more
discussion of psychology.)

15.D.Shanno, "Conjugate-Gradient Methods With Inexact Searches",Mathematics of
Operations Research, Vol. 3, August 1978.

16.R.Bank and D.Rose,"Parameter Selection for Newton-Like Methods Applicable to
Nonlinear Partial Differential Equations",SIAM J. Num. An., Dec. 1980.

17. P.Werbos,"The Elements of Intelligence",Cybernetica, No. 3, 1983. (Namur)

18. P.Werbos,"Rational Approaches to Identifying Policy Objectives" in Planning
in A Risky Environment: A Handbook of Energy/Econamy Modeling, J.Weyant and
T.Kuczmowski eds., Pergamon, forthcaming 1988.

APPENDIX: APPLICATION OF BQUATION 5 TO EXAMPLES GIVEN IN THIS PAPER

For the 3-layer architecture in dynamic modelling, we use equations 12a, 1, and
12b to define the feedforwards system to be differentiated. The last quantity to
be calculated in that system, prior to the target variable (Error), is neti (t)
for iDN+m-k, which appears on the right-hand side of equation 12b for t

less than T. Differentiating equation 12b with respect to such net (t),

plugging into equation 5, we derive an equation for such i:

F—MtN‘Hn-k'l-i(t) = Weighti (s(netM-Hrr-l&i(t) = smetyne (t+1))s (netM-lm-k+1(t(:)1;)

The next to last set of quantities are neti (t) for N#m-k» i» N, which appears on
the right only in equation 12, yielding the following for all t for such i:

F nety,. (t) = Weight.x * (s(nety, . (t) - x; (t)) * s (nety . (t) (16)
With net, (t), for N2 i»m, we still get equation 7, except for i between mthtl
and mi-h+k and t less than T; for such units, we add the tem F | net k(1:+1) ’

which results from differentiating equation 12a. Finally,
equation 8 still applies, as before.

1-352

For the second derivative calculation described above, we differentiate the
system made up of equation 1, 6, 7, 8 and 14, with "F_" changed to "G " to avoid
ambiguity. The last quantltles calculated in the system are G| w , used in
equation 14; when we plug into equation 5, we get: i3

FGW;5 = %44 an
The next to last quantities are G net (t) for all i, which appear on the right
both in equations 7 and 8. Applying equation 5, we get:

(18)
= * [
F_G net, (t) E F G W slnety(t) + E F_G nety(t) * W, s’ (net, (t))
i3 i3

Bear in mind that the leftmost summation here will often be zero when there is no
weight connecting two neurons. Also note that we have to use this equation in
the forwards direction, invoking it first for i=mt+l, then m+2, and so on.
(We do not n needtocalculateFGnetl for i less thanm, becausewedldnot
calculate G netl for such i in the original system of equations 1, 6, 7, 8
and 14.)

The equation to calculate F net (t) is more conplex, because net (t) appears
in almost all the equations:

s' (net, (t)) Z (F_G Wy *F_net, (t) + F_net, (£)*Wy,)

iKJ

F_net; (t)

+

s" (net; (t)) Z F_G net, (£) *F_net, (t) *W,;
i
+ F_G et (t)*((s' (et (£)))% - e, . (t)*s" et (1)),

where the last temm (lowest line) applies only for i N, and where e. , (t) refers

to s(net, (t)) y (t). This equation is calculated for decreasing i}—N
as was dZSne ear}ier for equations 6 and 7 in the original system.
Finally, to calculate the F W . in this system (which are the components of

the vector Hx), we get: 1]

FW, = Z (F_G net, (t)*F_net; (t)*s' (net,(t)) + F_net, (t)*s(net;(t))),
t

where the leftmost temm is taken to be zero for j<m.

These calculations have been checked, and the three-net equations have been
tested in many other circumstances (using similar but more camplex equations);
however, while equation 5 in general has been thoroughly reviewed and verified
over many years and many applications, I cannot campletely rule out the
possibility of a typographical error in this paper.

1-353

