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10.1. INTRODUCTION AND SUMMARY

This chapter will discuss the application of artificial neural networks (ANNSs) in the chemical process
industries, with particular emphasis on new designs that could be useful in other applications (neural
and nonneural) as well:

* The use of simple ANNs as the system identification component of model-based predictive
control (MPC), a widely used scheme that optimizes over time subject to constraints.

* The use of “robust” or “parallel” training of ANNs used in system identification. In tests on real
data from a wastewater treatment plant and an oil refinery, this has led to an orders-of-magnitude
reduction in prediction error when compared with conventional maximum-likelihood ap-
proaches. Earlier tests on nonneural implementations were also promising. There are deep
theoretical lessons involved, significant to all forms of ANN adaptation and system identifica-
tion.

* Techniques for pruning ANNs (a task which has turned out to be crucial to ANN performance),
techniques for using ANN-like techniques with other nonlinear specifications (for those who
do not want to use ANNSs as such) and techniques for using ANN models similar to nonlinear
ARMA models or Kalman filtering systems—to be given in later sections.

ANNE s are already in use in real-world applications by many of the major chemical manufacturers.
Applications fielded to date mostly involve pattern recognition or soft sensing or feedforward control
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systems, where safety and stability are not a major issue. There is substantial new research, and some
application, in more advanced forms of system identification and control. Greater efficiency in
chemical processing, through advanced control, could save millions of dollars and have a significant
impact on major global environmental problems.

This chapter will begin with a broad summary of these applications. Then, in section 10.3, it will
discuss the use of simple ANNs within model-based predictive control (MPC), and discuss some tests
run on a simulated chemical plant at the University of Maryland [1]. Section 10.4 will discuss
alternative ways of adapting ANNs for use in prediction, tested against real-world data. The
theoretical issues discussed in section 10.4 apply to system identification in general; they are not
unique to ANNs. Section 10.4 will also discuss alternative model specifications—neural and non-
neural—which address such issues as measurement noise, slowly-varying system parameters, and
memory of important but unobserved variables. Finally, the final sections of the chapter will provide
the equations needed to implement various extensions of these methods; for example, section 10.5
will discuss a technique for pruning ANNs [2], and section 10.6 will contain a tutorial on how to use
the chain rule for ordered derivatives [3, 4], so as to calculate gradients and Hessians at minimum
cost in a parallelizable manner for any nonlinear dynamic system. Sections 10.7 and 10.8 will provide
equations for options discussed in sections 10.3 and 10.4.

10.2. GENERAL BACKGROUND ON CHEMICAL APPLICATIONS

The Chemical Engineering Department at the University of Maryland, in cooperation with the
NSF-sponsored Systems Research Center, has investigated a wide range of applications of artificial
neural networks (ANNs). Because this work was successful, and also because of substantial industrial
interest, McAvoy founded a Neural Network Club in 1990 that now has over twenty-five dues-paying
corporate members, representing Fortune 500 corporations. Many of these companies have achieved
net savings already, through existing applications of ANNSs, which range from hundreds of thousands
to millions of dollars. At arecent public talk [5], a representative from DuPont stated that his company
is already into the “third generation” of ANN applications, reaching out to dozens or even hundreds
of sites within the company.

The applications of ANNs to date at the Neural Network Club are probably representative of those
in the industry:

Sensor interpretation (biosensors) [6]

Nonlinear dynamic modeling [7,8]

Modeling (or “cloning” of human operators/experts) [9]
Nonlinear steady-state modeling

Knowledge extraction [10]

Smart optimization [11]

Fault detection [12]

NHoup L=
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In addition, a technique has been developed to remove unnecessary connections from ANNs [2] (see
section 10.5), using a modified objective function. Techniques of this sort are important to the success
of many applications involving backpropagation.

The sensor-interpretation example [6] is probably typical of the easy, first-generation applications
that are now widespread and still expanding,. In this example, McAvoy et al. were basically trying to
build a “soft sensor” capable of monitoring the concentration of desirable products in real time in a
chemical plant. Traditionally, the process industries have relied on simple measurements such as flow,
pressure, and temperature; however, to achieve a higher level of efficiency, and to control more
complex systems such as bioreactors, it is important to measure concentrations as well.

Chemical engineers have known for decades how to measure chemical concentrations in the
laboratory, if one is willing to wait for a few hours or a few days. The challenge here lies in real-time
sensing. We do have real-time measurements available—such as fluorescence spectra—which
implicitly tell us what the concentrations are; the problem is to learn the nonlinear mapping from the
spectral information to actual concentrations. In their experiment, McAvoy et al. did exactly that,
by putting together thirty-three samples of various mixtures of amino acids, and using a simple ANN
to predict the corresponding concentrations of fluorophores. They achieved an average absolute
prediction error of 5.2% in predicting the mole fractions, using an ANN, versus 11.7% when they
used partial least squares (PLS), the best conventional alternative [13]. A larger training database
should make the method more accurate.

ANN:Ss for pattern recognition have also been used to detect hot spots in the continuous casting of
steel [14]. In this application, ANNs led to a great increase in accuracy over more expensive,
conventional methods. The system has been installed in several plants of the Nippon Steel Company
and is scheduled for use in all of them.

Nonlinear dynamic modeling—Ilike smart sensing—is crucial to real-time control. For that reason,
this chapter will describe our recent experience in that area in some detail. First-principle models are
possible in the chemical industry, as in other industries; however, the sheer complexity of chemical
plants and the presence of unknown secondary reactions usually make such models extremely
expensive, unreliable, and specific to only one or two plants. For this reason, empirically based
models—either linear models or ANN models—can be of great value. ANN models can be used either
as alternatives to first-principle models or as supplements, to predict the errors of the first-principle
models.

The modeling of human operators can also be very useful [9]. The difference between the best
human operators and the average is often worth large amounts of money, because of differences in
plant efficiency during plant change-over and the like. The techniques required to model human
operators with ANNs are no different, in principle, from those required to model other dynamic
systems. This approach is discussed further in the section on supervised control in Chapter 3.

ANNs have been used at Maryland and elsewhere to extract knowledge that is then used in more
conventional Al control systems [10]. There are probably dozens of ways to combine ANNs and Al
techniques, useful in different applications, especially if the Al systems are based on differentiable
functions (as in fuzzy logic). Many of the best examples of such combinations come from Japan [15].

More effective optimization—both in the design of chemical plants [11] and in real-time optimi-
zation—will probably turn out to be the most important application in the long term. As an example,
imagine a petrochemical plant that produces a billion dollars worth of product per year, running at a
ninety-eight percent level of efficiency. Such efficiencies are quite typical. The remaining inefficien-
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cies are typically due to the difficulty of optimization during transient or changing conditions, when
process parameters change in an unplanned or nonlinear manner. Good nonlinear optimization might
well raise this up to ninety-nine percent efficiency, thereby saving the company $10 million per year.

More importantly, a rise in efficiency from ninety-eight percent to ninety-nine percent typically
cuts the unwanted waste products in half, from two percent to one percent. It is not obvious what the
larger social implications of this may be, because there are so many different kinds of plants and
waste products; however, as a general rule, there is a correlation between inefficiency and waste, and
there is reason to believe that such improvements could have a substantial impact on environmental
problems. As a further example, a representative of General Electric (GE) has told us that more
efficient, pattern-recognition-based control systems might well be able to reduce the emissions of
NOx by a factor of ten, in gas turbines and boilers, even as a retrofit to well-designed modern systems.
These kinds of environmental benefits address central problems that would otherwise be very difficult
to deal with in a comprehensive, long-term energy and environmental policy [55].

Better control may be crucial, as well, to the feasibility of using certain advanced production
processes, such as the biological processes used in biotechnology and wastewater treatment plants.
The potential markets for such processes are very large.

Better diagnostics are important, of course, to improved safety and to cost-effective maintenance
that can minimize the need for very expensive replacement investments. A wide variety of techniques
has been used at the University of Maryland and elsewhere [12,14,16]. The issue of safety will be a
crucial factor in the use of novel control designs in the chemical industry.

10.3. MODEL-BASED PREDICTIVE CONTROL WITH ANNS

Model-based predictive control (MPC) has been used very widely in the chemical and petroleum
industries. Because of the difficulties of using or obtaining first-principle models (mentioned above),
the usual procedure is to develop a linear model of the plant, based on empirical data, and to use that
mode] within an optimization routine. Our goal has been to use the same empirical data, instead, to
develop an ANN model of the same plant. This is almost as easy as developing the linear model;
however, because ANNs can learn to represent any well-behaved nonlinear function [17,18,19], they
should be able to represent the plant more accurately, and thereby lead to better performance.

The simulations described here were first reported by Saint-Donat, Bhat, and McAvoy [1] at .
Maryland. Saint-Donat has since returned to the ATOCHEM company of France, and Bhat has gone
to Texaco.

Model-based control systems have been used before in the neural network community. For
example, see the section on the “backpropagation of utility” in Chapters 3 and 13. The method used
by Saint-Donat et al. is technically a form of the backpropagation of utility, but it has two special
features that it shares with other forms of MPC:

* The present and future control signals are output directly from the optimizer, not from an ANN
or other parametrized controller; in other words, the system solves for an optimal future schedule
of actions, rather than an optimal set of controller parameters.

* The optimizer takes account, explicitly, of system constraints, which typically involve con-
straints on flow rates, temperature, and pressure.
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This method is parallelizable, and the major pieces of it could be implemented on chips; therefore,
unlike traditional MPC, it has serious promise as a real-time optimal control system.

This section will begin with a more detailed description of the task that Saint-Donat et al. addressed
in simulation. Next, it will describe the architecture used to perform the task. It will conclude with a
discussion of the observed performance.

10.3.1. The Task: A pH CSTR Reactor

The task is to control the level of acidity (pH) in a continuously stirred tank reactor (CSTR), illustrated
in Figure 10.1. We assume a constant input flow of acetic acid. Our goal is to adjust the flow of sodium
hydroxide (NaOH) so as to “neutralize” the acid—to achieve a desired setpoint for the pH. To test
the control system, Saint-Donat et al. evaluated its ability to cope with a change in setpoints. In the
initial tests, they changed the setpoint from 6.5 to 6.3. In later tests, they changed it from 7.2 to 7.0.

At any given time, ¢, we have information on the pH (which we observe) and the flow rate (which
we chose), both for times ¢ ~ 3, £ —2, and ¢ — 1. We also observe the pH at time ¢. Qur goal is to decide
on the flow rate for times ¢ through ¢ + 7. The flow rates for times ¢ + 8 through ¢ + 30 will be set equal
to the flow rate for time ¢ + 7; this is done to stabilize the system, to prevent “overoptimization,” and
is standard in MPC.

To be more precise, our goal at any time ¢ is to pick the actions (F,(f) through F,(¢ + 5)), which
will minimize the tracking error:

30 ¢))
U=, (pH(t+Kk) - pH'(t+ k)Y,

k=1
where pH is the actual pH and pH' is the desired pH, subject to four constraints that apply at all times:

pHmin < PH < pHmux (2)

Acetic acid

NaOH flow
flow l ={ (time)

= { (time)

B"El pH

Figure 10.1 Case study (pH in a stirred tank reactor)
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Tracking error is denoted by “U,” rather than “E,” because it is really a measure of utility or
disutility—a measure of the desirability of the actual state of the plant; the letter “E” is reserved for
prediction errors or classification errors or the like. Our control system as a whole is designed to
minimize U, but it will contain a system identification component trained to minimize E.

The simulation was based on equations taken from [7]. By writing material balances on Na'and
total acetate (HAC + AC), and assuming that acid-base equilibria and electroneutrality relationships
hold, one gets:

Total Acetate Balance:

& = [HAC] +[AC"] ' )
V% = F,C.—(F, +F)E &)
Sodium Ion Balance: .- o

§ = [NA'] e " ©)
V—% = F,C— (Fi + B e TR )
Electroneutrality:

{+[H™] = K/IH 1+ KIHACYIH ] : ®)

F,; and F; are the acid and base flow rates, respectively. In our case, F; is the manipulated variable.
C, and C, are the concentrations of the acids and bases, respectively, in the input stream. V is the
volume of the reactor. The parameters used in this simulation are given in Table 10.1.

Table 10.1

CSTR Parameters Used Value
Volume of Tank 1000 lit.
Flow rate of HAC 81 lit./min.
Steady state flow rate of NaOH 515 lit./min.
Steady state pH 7
Concentration of HAC in F1 0.3178 mol/lit.
Concentration of NaOH in F2 0.05 mol./lit.
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Figure 10.2 Neural net based control.

10.3.2. Architecture Used to Solve the Problem

The architecture used to solve this problem is shown in Figure 10.2. First of all, an ANN was adapted
or fitted to serve as a dynamic model of the process to be controlled. Then, in real-time control, the
ANN was held fixed, except for a constant bias term that was continually updated. At each time ¢,
the optimizer looked ahead thirty steps and planned a series of actions for thirty time-steps ahead;
however, it actually took only one step, and then—at time ¢ + 1—it recalculated everything. This
section will describe these steps in more detail.

10.3.2.1. Adapting the ANN The ANN was an ordinary three-layer multilayer perceptron
(MLP), illustrated in Figure 10.3. In general, this kind of network inputs a vector of inputs, X(f), made
up of components X,(¢) through X,,(¢). It outputs a vector Y(#), made up of components Y,(f) through
Y.(7). It obeys the following system of equations at each time ¢:

} R ©)
Vi = W+ 2 Wi Xil0) 1<j<h
k=1
: 10
5 = s0) & UL+ 1<j<h (10)
: (11
vi = Wo+ 2 Wix 1<i<n
=1
(12)

Py = xt = s00) 2 UL +e™), 1<i<n



290 HANDBOOK OF INTELLIGENT CONTROL

Output Laye

Hidden Laye

Input Layer

Past outputs Past and Present inputs

Figure 10.3 Multilayer perceptron.

where h represents the size of the hidden layer, where s() is usually called “the sigmoid function,”
where the matrices W and W are the “weights” or parameters to be adapted, where v and v* represent
the levels of voltage stimulating the neurons on the hidden and output layers, respectively, and where
x and x* represent the intensity of the outputs of those neurons.

In this application, Saint-Donat et al. used a net with seven inputs (i.e., m = 7), four hidden units
(h = 4), and one output or target variable (n = 1). At each time ¢, the input vector, X(f), consists of the
following seven numbers: pH(t — 3), pH(t - 2), pH(t — 1), F2(t - 3), Fi(t - 2), Fx(t— 1), and Fy(t). The
output, Y;, was used to predict pH(f). In actuality, the variable F»(¢) had little effect on the forecast of
PpH(t), because of deadtime effects, and was deleted from subsequent tests; however, this chapter will
assume its inclusion, for the sake of generality. In earlier experiments [7], ANNs had been developed
to predict pH(t + 1), pH(t + 2), and pH(t + 3) all together as outputs of the network; however, those
ANNs were not used in this application. Figure 10.5 illustrates the fit between predicted pH and actual
pH in some of the earlier work [7].

In order to adapt this network—i.e., to estimate the optimal values of the weights W; and
W,;'—Saint-Donat, et al. performed two tasks: (1) they developed a database of simulated X(#) and
PpH(¢t) for many times ¢; (2) they used the well-known technique called backpropagation to adapt the
weights, so as to minimize the error of the network in predicting pH(f) over that database.

The technique for developing the database was taken from Bhat, et al. [7]. Basically, a pseudo-
random binary signal (PRBS) was added to a steady-state signal for the manipulated variable, and
equations 4 through 8 were used to forecast the resulting flows. This led to the time series for flow
rate (F;) and pH shown in Figure 10.4. This continuous time series was read off at regular time
intervals, yielding the database for X(#) and pH(t) across different values of ¢.
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Figure 10.4 Case study: pH in a C.S.T.R. (Acid flow rate constant and NaOH flow rate varying.)

The technique used to adapt the weights was basic backpropagation (BEP)—a specialized use of
backpropagation first proposed by Werbos [20-22] and later popularized by Rumelhart [23]. In this
application, Saint-Donat et al. cycled through each of the (X(f), pH(f)) pairs in the database,
performing the following sequence of steps for each pair ¢:

1. Use equations 9 through 12 to calculate a forecast, ?(t), for pH(t).

We will denote this forecast as pﬁ(t).
2. Calculate the error of this forecast:

E@) = V(A - pH®)Y? (13)
3. Update the weights by the equations:
new Wjj = old Wjj - learning_rate * OE () (14)

i
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Figure 10.5 Prediction on training data (st. st. pH =9).

new Wj; = old Wj; — learning_rate * 9E@)
i

’

where the constant learning_rate was set as in [7]. They cycled through all of the (X(¢), pH(¢))
pairs, over and over, until the weights converged.
For the simple architecture shown in equations 9 through 12, it happens that:

%Ev:ft) = Y- Yy * oD * x5

15)
and
n (16)
aa—f‘(? = | B0 - vy * 00 |* Wi X),
ik

=l

where the sigmoid function s( ) has the property:
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S = s - s()). 17)

In this application, n = 1 and Y(¢) is just pH(?); this simplifies the calculations considerably.

Backpropagation, in the most general sense, refers to a general algorithm for calculating derivatives
efficiently through alarge sparse system, to be described in section 10.6. The efficient implementation
of equations 16 and 17 is simply one example of the applications of that algorithm. Many authors
have discussed alternatives to equation 14 which can speed up convergence [21,24,25]

10.3.2.2. Adapting the ANN Bias in Real Time Once the ANN was adapted off-line, as dis-
cussed in section 10.3.2.1., the weights were frozen throughout the control simulations, with one
exception. At each time ¢, the forecast of pH(t) actually used was:

pH(?) forecast = pA(f) + bias, (18)
where pﬁ(t) was the forecast from the ANN and bias was calculated from the previous time-step:
bias = pH(t - 1) - pH(t-1). (19)

Furthermore, this same value of bias was used in predicting pH(t + k), for k= 1 through 30, as required
by the control system (optimizer) at time ¢. The bias term accounts for plant/model mismatch and
unmeasured disturbances. By using equation 19, it can be shown that perfect setpoint tracking can be
achieved in spite of these effects.

10.3.2.3. Solving the Optimization Problem in Real Time Ateachtime t, the optimization rou-
tine solved for values of Fx(t) through Fx(t + 7) to maximize:

30

U =Y (pH(t+k) - pH'(t + k),
k=1

subject to the constraints:

PHuin < pH < pHpsx
Fomin £ F, £ Fymax
Fy¢+k) = Fo(t+7)  fork>1,

as given in equations 1 through 3, assuming that pH(t + k) is given as in equation 18.

Actually, equation 18 only tells us how to predict pH(f) when we know F(#) and prior information;
Figure 10.6 shows the general approach used to “chain” the ANN to produce all the forecasts we
need, from pH(t) through to pH(t + 30). (Some of these figures have minor differences from the nets
used here, because they came from earlier work.)

This optimization problem is a straightforward problem in nonlinear programming. To solve this
problem, Saint-Donat et al. [1] used a feasible sequential quadratic programming (FSQP) program
developed through research at the University of Maryland [26,27]. This program can:

. . R
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Figure 10.6 Simple example.

* Minimize any smooth nonlinear function

* Deal with any kind of nonlinear equality and/or inequality constraints on the manipulated
variables

* Generate only feasible iterates (i.e., meet all the constraints even before convergence to the final
solution)

This last feature will be especially important if we actually try to apply this approach in a real plant.
In areal plant, one can never be certain that the FSQP will find the optimal solution quickly enough,
if we require it to stop its calculations at the end of each sampling cycle. This could become a serious
problem for complex plants. However, the feasibility property guarantees that the current iteration of
FSQP will still give us acceptable values for the manipulated variables, even if they are not quite fully
optimal. The feasibility feature has another advantage, which may help in speeding up convergence:
By keeping the iteration out of the unacceptable range, it also keeps it within the original training
range of the ANN; iterations outside that range might have confused the iterative process, because
predictions from the ANN are far less reliable outside of the original training range.

In the future, there is reason to hope that this algorithm can be implemented in a fully parallel form,
on a chip—enabling true real-time applications. ANN calculations can certainly be done on a chip.
Even within the optimization algorithm, a major part of the computation concerns the gradient of the
Hamiltonian function for the problem, given by:

» (20)
H=U+Y, (w’(pH(: +K) = pHoin) + N2(DHunax — pH(t + k)))

=)

30
+y (M”(Fz(z +K) = Famin) + A (Famx — FAt+ k»)
=
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where the A’s are Lagrange multipliers. In the special case where pH(t + k) is predicted by an ANN,
we can parallelize the calculation of this gradient, simply by using backpropagation through time.
This was actually done successfully in the simulations by Saint-Donat et al. In fact, backpropagation
can also be used to calculate the Hessian of the Hamiltonian—which can also be used in FSQP—in
a highly efficient way. section 10.7 will provide the details of how to do both things, based directly
on the chain rule for ordered derivatives.

Additional speedup results from using the values of Fx(¢ + 1) through F;(¢ + 30), calculated at time
t, as starting values for the optimizer at time ¢ + 1. Deeper analysis of these Lagrange multipliers may
also be useful. (However, users of methods like differential dynamic programming or DHP should
be warned that these Lagrange multipliers are quite different, because the equations used to predict
PpH(t + k) are not treated as constraints themselves.)

10.3.3. Simulation Results and Conclusions
Before testing the overall control scheme, Saint-Donat et al. conducted a brief test of the steady-state
predictive abilities of the ANN. Figure 10.7 shows a comparison of the steady-state pH versus the

steady-state flow of NaOH into the CSTR for a constant inflow of acid. As can be seen, the ANN
achieves areasonably accurate model of the highly nonlinear steady-state characteristics of the CSTR.

steady-state description of the model(*) and the nn

1]
10 r
o L
- B
(9 L
8 -
-
7 -
Wt
(' —l i A Il l A i e 1 4L - | 1 I} '] .
500 510 520 530

basic flow-re

Figure 10.7 Steady state description of the model(*) and the nn.
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Figure 10.8 Controlled set-point change: 6.5 — 6.3.

To test the model-based control approach, the pH setpoint was initially set to 6.50. Then the setpoint
was changed to 6.3. Figure 10.8 shows the actual change in acidity achieved by the neural net control
system. Also shown is the response achieved when the real model is used in place of the ANN in
Figure 10.2. As can be seen, the response achieved with the ANN is close to that achieved using the
real model. In both cases, the new setpoint is not reached immediately, because the optimization hits
constraints on the allowable flow. It is clear in this case that the ANN has captured the dynamics of
the process. There was no need for first-principle modeling; the control architecture shown in Figure
10.2 does not need any prior knowledge about the plant. The ANN, although trained on a very wide
region, is able to predict very accurately the dynamics of the pH system in this region between 6.5
and 6.3.

To provide a more challenging problem, the pH setpoint was initially set at 7.2. Then the setpoint
was changed to 7.0. In this pH region, the steady-state pH gain to basic flow (i.e., the derivative of
pH with respect to flow) changes by a factor of 2.8, as Figure 10.7 illustrates. Figure 10.9 shows the
setpoint responses achieved by the ANN control system. Also shown is the response achieved when
the real model is used in place of the ANN in Figure 10.2. As can be seen, the ANN-controlled
response is slower than that of the real model and its undershoot is higher. It should be noted that the
ANN was trained on a database where the pH varied between 6 and 11. If the ANN were trained on
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Figure 10.9 Controlled set-point change: 7.2 - 7.0.

data in the pH range 7.0 to 7.2, a more accurate model would be achieved. (This also suggests the
possibility of something like neural gain scheduling, as a step up from the usual linear gain
scheduling.) Although the process gain changes by a factor of 2.8 in the region between pH equal 7.2
to 7.0, the neural net is able to cope with this change effectively. Overall, the results shown in Figure
10.9 are encouraging, since the nonlinear neural net model was developed using only process data.
As can be seen, the ANN model used in a model predictive control architecture produces a response
in certain regions that is slower than that produced by the real model. The question arises as to how
this discrepancy can be explained. Figure 10.10 shows the derivative of the tracking error U with
respect to the first future move of the manipulated variable (F;). For each flow rate on the X-axis, the
steady state is assumed to be reached. Tracking errors were calculated based on a setpoint of 7.0,
which corresponds to an NaOH flow of 515 liters per minute. The ANN does a good job in most of
the cases but has some problems in modeling the dynamics near pH = 7. This case study is particularly
nonlinear, with the classic pH jump near 7. Given that the control architecture is tested in this region
of pH near 7, results like those in Figures 10.9 and 10.10 are easy to explain. These results do not
represent the limit of our system to control a plant, but rather the limits of this ANN in modeling
velocity information. The ANN was trained on real input-output data, and was asked after conver-
gence, not only to reproduce that data, but also to provide the first and eventually the second derivative
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Figure 10.10 First gradient of the objective function.

information, on which it hasn’t been trained. (It is possible, in principle, to augment the error function
E(t) by adding the length of the difference between the gradient vectors of the actual model and the
ANN. The adaptation is straightforward and inexpensive, using second derivative techniques analo-
gous to those used in “GDHP” [28]; however, actual gradient vectors are not generally available for
real plants.) Perhaps such derivative information would be more accurate if narrower training regions
were used, or if a larger network were used (with a larger training set). Other traditional chemical
engineering processes should not be so demanding in terms of their nonlinear behavior compared to
the pH system studied in this section.

10.4. TOWARDS A MORE ROBUST TRAINING OR IDENTIFICATION
PROCEDURE: EMPIRICAL RESULTS,
ALTERNATIVE MODELS, AND THEORY

The previous section has shown how the quality of system identification with an ANN can have a
strong effect on the resulting quality of control. Chapters 3 and 13 argue that the quality of system
identification is crucial to the capabilities of neurocontrol in general, even when other designs are
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used. Most of the failures of neurocontrol in the past year or two can be traced back to inadequate
system identification. This section will discuss alternative ways of adapting ANNs for the purpose
of prediction, which appear to work far better than the conventional methods described in section
10.3.

The problem of system identification is not unique to neural networks. In the control theory
community as well, a variety of techniques have been tried. Linear system identification has made
great progress, and many generic linear models, such as transfer-function models and convolution
models, are available and widely used. For example, transfer function models have been used as
fundamental tools for the design and analysis of control systems. Convolution models, such as a finite
impulse response model (FIR) or a step response model, have played an essential role in the dynamic
matrix control algorithm (DMC). However, linear models can only be used under limited conditions
and special assumptions, because most physical processes usually behave nonlinearly.

This section will begin by discussing new empirical results, obtained with an alternative training
procedure in the nonlinear case [29]. The ANN that we adapted was a very simple static network, as
in section 10.3. First we will describe how we adapted the network. Next, we will describe the
real-world data and results, first for the wastewater treatment plant and then for the oil refinery. Next,
in section 10.4.5, we will compare our simple ANN model and design against similar designs—such
as ARMA models and their ANN generalizations—which could lead to better performance in more
demanding applications. Finally, in section 10.4.6, we will describe the deeper statistical issues that
underlie our training procedure, along with the nonneural tests of similar methods and their
extensions. We will describe some alternative training methods that are likely to be more powerful
than what we tested here. The issues here are extremely subtle, and there is clearly room for further
research to do even better. Section 10.8 will provide some of the equations needed to implement these
models and methods.

The reader should be warned that the methods described in the first part of this section will work
very poorly in some situations. That is the reason why section 10.4.6 is important for some applications
and why more research is needed. In some applications, however, the simple methods of section
10.4.1 do lead to an orders-of-magnitude reduction in prediction errors.

Even before we discuss our empirical results, we should say a few words about our use of the word
“robust.” In control theory, “robust control” typically refers to the design of linear controllers that
are “robust” in the sense that they achieve stability (if not optimality) in control even as the parameters
of the unknown linear plant vary over a wide interval. This is merely one special case of “robust-
ness”’—the effort to build systems that work well in practice despite our lack of perfect information
about the plant to be controiled or predicted. The phrase “robust estimation” was used long ago in
the field of statistics [30], to refer to identification procedures that tend to yield good predictions
despite our lack of knowledge about the equations governing the real world. The effort described here
was motivated by earlier work on robust estimation [3]. Again, the theory involved is quite subtle
and will be described in more detail in section 10.4.6.

10.4.1. Networks and Procedures Used in System Identification in Our Tests

10.4.1.1. Structure of the ANNs In all these tests, we used a simple MLP, as described in
equations 9 through 12. However, the vectors Y(f) to be predicted had more components here. In the
three wastewater treatment tests, we tried to predict the concentrations of three ions coming out of
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the various treatment subsystems: NH,’, N032', and PO/ ; thus, ¥Y(#) had three components,
corresponding to these three concentrations, in each of these tests. In the oil refinery test, we tried to
predict two production variables that we cannot describe because of the proprietary nature of the data;
thus Y(r) had two components. In all of these tests, the inputs to each network included data on other
variables (#) from earlier times. The inputs also included ¥(z — 1) in all cases. In two of the four tests,
we also supplied Y(z — 2) and Y(z - 3) as inputs to the network. The approach we used here would not
be useful in cases where Y(¢ — 1) is unimportant as an input in predicting ¥(f); however, cases like
that are relatively rare in control applications.

10.4.1.2. Three Alternative Approaches to System Identification This section will only de-
scribe the two approaches tested here, and a related approach introduced for the sake of explanation.
See section 10.4.6 for other approaches.

In all four tests, we used an ANN to predict Y(#) as a function of earlier data. We may call this
vector-valued function “F,” and we may write our model as:

9(1) =FX(@¢-1),Yt-2),Y(t—3), u(t—1), u(t-2), u(t—-3), W), 21

where F is the function that represents the neural network, and W is the set of weights we are trying
to estimate/identify/adapt.

The most common way to estimate/identify/adapt a function of this kind is to pick W so as to
minimize:

E=1nY -t (22)

i

Many alternative error functions (such as the 1.5 power of error) have been used for systems that do
not have Gaussian noise distributions [30]; however, that aspect of robust estimation is not our major
concern here. (Also, it is trivial to adapt our approach to such alternatives.) In our case, we will always
minimize error as defined in equation 22, but we will minimize three different measures of error based
on three different ways of interpreting equation 22. The meaning of equation 22 is not well specified
until we specify how to calculate “Y(£)” as a function of W and of our data. The most common
procedure, based on maximum likelihood theory and a simple model of noise, is to substitute equation
21 into equation 22 and minimize the following expression as a function of W:

E, = 1Y (Y(0) - F(¥(t- 1), Y(t = 2), ¥(t - 3), u(t— 1), u(t — 2), u(t - 3), W)’ @3)

where Y(1-...) refers to actual observed data for ¥, and where F; refers to the ith component of the
function F. This is the procedure we used in section 10.3, and it is also the procedure used in the bulk
of ANN research.

An alternative approach is to build up prediction for Y(¢) from predicted values in earlier time
periods. Thus, we may calculate a prediction:

P = FRe-1), P -2), P¢-3), u@e - 1), ut-2), ut - 3), W) 24)
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and therefore try to minimize the following function of W, treating the other arguments of the function
as constants:

E = 1Y (o -Fde-1), %0 -2), $0-3), u-1), 00 -2), u~3), Wy (25)

i

Approaches of this sort have been used quite often in the linear case in control theory, particularly
by Ljung and by Narendra [31-33]. Usually they are called parallel identification methods.

Notice that equations 23 and 25 are both defined, at time ¢, as functions of a small number of inputs
available at time ¢ (and earlier). Therefore, both equations would allow us to adapt an ANN on an
observation-by-observation basis, as in section 10.3. Both are suitable for real-time system identifi-
cation. In these tests, however, we studied the problem of off-line system identification.

In off-line system identification, it is possible to do something very similar to equation 25, while
also accounting for the influence of the weights W in changing the values of
Q(t -1, Q(t —2), and Q(t — 3), as they are input to the neural net. To explain this idea in formal terms,
we need to consider how equation 24—chained back from time ¢ to time 4 (where time ¢= 1 is defined
as the earliest data point)—leads to the functional relationships:

P = F@e-1), Ye-2), ¥e-3), ue-1),... u@-3), W) (26)
= FFP-2), ¥e-3), ¥ - 4), u(t - 2),... ut - 4), W), ¥t -2), ¥t - 3), u(t - 1)..W)
= FFF®R@-3)..w), ¥ - 3), Rt - 4), ue - 2).. W), FR¢ - 3)...), §(¢ - 3), ut - 1)..W)
= G(Y(3), Y(2), ¥(1), u(t - 1)... u(1), W),

for a function G which is fairly complex. In other words, equation 24 implicitly makes 9(!) afunction

of ¥(3),...,W. In our tests, we picked W so as to minimize the following measure of error as a function
of W:

Ey = 10Y, (Y{),~ G(¥(3), ¥(2), Y1), u(t - 1) . . u(1), W))". @n

i

In practice, the idea is simply to chain the network forward from initial data, as shown in Figure 10.11
(drawn for a different application), and to minimize the total error across the entire time trajectory.

In other words, the classic real-time version of parallel identification treats Q(t —~ 1) through
p(t - 3) as constants, when adjusting W so as to minimize error at time . The off-line version attempts
to account for the impact of the weights in changing what these inputs would have been. This approach
can be applied in a real-time system as well (section 10.4.6), but the tests reported here were all done
off-line. The approach can be applied to any forecasting model—not just ANNs—but the minimiza-
tion problems become much easier when the backpropagation algorithm is used.

The idea of adapting ANNS so as to minimize equation 27 was first proposed by Werbos [34,35],
as an extension of his earlier work on the general nonneural case [3,36,37]. The ANN version has
also been used by Kawato on data from a simulated robot arm, as part of his “cascade” control design
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[38]. Werbos has called this approach “the pure robust method.” In some situations, it is better to use
a more complex method, called the compromise method, to be discussed in section 10.4.6. The pure
robust method can be rationalized as an alternative maximum likelihood method, based on what
control theorists have called an output errors assumption [31-33]; however, section 10.4.6 will argue
that this interpretation understates the significance of the method.

In the tests reported here, we compared the conventional maximum likelihood approach (equation
23) against the pure robust method (equation 27) to see which led to better predictions from the ANN.
The pure robust method led to multiperiod prediction errors that were smaller by orders of magnitude.

10.4.1.3. Overview of the Algorithm It is possible, in theory, to minimize equation 27 by the
usual procedure of “backpropagation through time” (BTT). More precisely, we can pick initial values
of the weights W by some sort of random number generator and iterate through the following steps
until the weights settle down:

1. Starting from actual data on Y in times ¢ = 1 through ¢ = 3, and actual data on u at all times,
use equation 24 to calculate 9(4); then use it to calculate 9(5), and so on up to the end of the
training data.

Calculate the sum of square error, E, across all time (based on equation 22).

Update all the weights, W;, by:

w N

. oE
new W; = old W; — learning_rate * B_W, R

for some small learning_rate determined in ad hoc fashion. The calculation of the derivatives of E
with respect to the W; can be done all at once, in one quick sweep through the data, using the
backpropagation algorithm.

Unfortunately, the errors E depend on the weights W in a highly volatile nonlinear way. There is
akind of Murphy’s law at work here: Highly accurate statistical estimation implies very large second
derivatives (because of how one calculates estimation errors in statistics); large second derivatives
tend to imply nonsmooth surfaces with steep regions near the optimum; that, in turn, makes it harder
to find the minimum of error. In earlier work, Werbos has generally used the following procedure to
overcome these problems:

1. Do not initialize the weights at random. Instead, initialize them to their maximum likelihood
values.

2. Next, adapt the weights using some form of the compromise method, which is similar to the
pure robust method, but not so extreme.

3. 'Then use those weights as the initial weights with the pure robust method. (If necessary, repeat
step two several times, using stiffer and stiffer forms of compromise.)

This procedure is not guaranteed to find a global minimum. However, it is guaranteed to do better,
in some sense, than the initial weights—the maximum likelihood weights, which are the major
alternative we had available to us. In addition, this procedure will work much better if one uses
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adaptive learning rates, as given in Chapters 3 and 13, or a sophisticated numerical method like one
of those discussed by Shanno [24].

For these tests, it was easier and simpler to alternate between a simple version of BTT (as given
at the start of this section) and a random search procedure in order to avoid a local minimum.
Convergence was still essentially an overnight affair, but this was easier for us than spending weeks
to upgrade the computer program. In addition, we used an iterative procedure to decide on the number
of hidden units in each network. The remainder of this section will describe the remaining elements
of the algorithm in more detail.

10.4.1.4. Calculation of the Derivatives of Error The derivatives of E;, as defined in equation
27, can be calculated, in principle, by using the conventional chain rule for partial derivatives.
However, this calculation is very tedious and very subtle. In addition, it is not a “linear” kind of
calculation, which can easily be automated. Even the best engineers make errors very easily when
they try to calculate partial derivatives in an ad hoc way, through very complex systems.

Werbos [3] developed an alternative chain rule in 1974 for use with ordered dynamical systems,
which is more “linear” (i.e., straightforward) and was proven to yield the correct dernvatnves Section
10.6 describes the use of this chain rule in more detail.

In our application, it was easiest to write out the forwards equations which were used to calculate
error, and then to apply the chain rule for ordered derivatives directly to our system, in order to work
out the derivative equations. Section 10.8 will provide a more general version of these equations;
here, we will report exactly on the version used in these tests [29], developed by Su, for the sake of
the intuition that it may provide.

The forwards equations of the MLP were represented as:

V(1) = W) (28)
x'(® = s(v'@), 1=1.2,....L, (29)
where L denotes the output layer (there are L + 1 layers in all), and v'( ) and x'( ) are the voltage vector

and the output vector, respectively, from the 1th layer. The various vectors, matrices, and functions
are defined as:

1 0 .. O (30)
Wio Wii ... Wi
Wi Wai ... W5,

3
e

Wio Waa ... W0

SO = (1, SV, v SO (31
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V) 2 (1, i@ e @) (32)

20 2 (1,08, o x20) (33)

Here, W, ' are bias weights and s( ) is the sigmoid function defined in equations 10 and 12. In addition,
an input neuron can be represented as a neuron with a linear activation function; in other words, x%(¢)
= ¥’(f). These equations, combined with equations 22 and 24, complete our description of how we
calculated total error as a function of the weights.

Starting from those system equations, the chain rule for ordered derivatives leads very simply and
directly to the following relationships:

+E a/vl(n (34)
avv;l 2 av (t) avvlll

J'E _ JE ) (35)
() () W

a+E : a/E "2 a+E alvzﬁl(t) (36)

= + .
X xS o' o

and 97ax{(f) =0 for all 1 # L, where 9" indicates ordered derivatives and o indicates conventional
partial derivatives. These conventional partial derivatives are calculated by differentiating the
functions for E, v, and x exactly as they are written in equations 22, 28, and 29 without any
substitutions. Let us define:

J'E

FLi0 = 80) = 32 .
J

With this notation, equation 34 looks very similar to the original delta rule of Widrow and Hoff [39]:

T
a+ =1 1 -1 Gn
=Y F '@ = ().
W, Z § e

=1

In other words, the change of the weights W' that connect the (1 - 1)th layer to the 1™ layer is
determined by the product of the (1 - 1)* layer’s output and the " layer’s delta. Thus, the key to
updating weights in the training phase is to calculate the deltas, the F_v terms, the derivative feedback
to the voltage variables. This calculation can be carried out as follows:

JE (38)
axj(?) 5

Fy() =
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wl

n (39)
+ Y F ' oW,
k=1

JE _ JE
oxi()  oxyp)

Equation 39 contributes to propagating information about error backwards from the (1 + 1)* to the 1"
layer through the deltas recursively. Note that:

oy 2O @)
5+ 1) av;( ) x(0(1 - x(0),

for layers 1 where the sigmoid function is used in equation 29; however, for linear neurons (e.g., input
neurons), this s” term will simply equal one. Nevertheless, equation 39 has a slightly different form,
depending on whether we calculate error in the traditional way (equation 23) or in the pure robust
way (equation 27).
Case 1: When we calculate error in the traditional way, equation 39 becomes exactly the same as
in basic backpropagation or the “generalized delta rule” [23], i.e.:

F_Vi () = e(d)s (1) @)

F b = | ) Fiows! s,'-"(t)

k=1

(42)

where e/(f) is defined as x;(f) - Y{#), and h # L indicates hidden layers.

Case 2: When the ANN output x') replaces ¥(z) as the input to the network, then changes of
weights will affect x“(¢ + 1) and thus affect x“(t + 2) all the way up to x“(z). Therefore, the second
term of equation 39 has to account for this chaining from time ¢ = 0 to = T. As mentioned earlier,
the input layer at time ¢ + 1 can be considered as a part of the (L + 1)” layer of the network at time ¢
(see Figure 10.12). When calculating the delta of the output layer at time ¢, one has to calculate the
delta for the input neurons at times £ + 1 up to ¢+ k, all of which are directly connected to the
corresponding output neurons at time £. (Again, in our tests, we used a k—a basic time lag—of 1 in
some tests, and 3 in others.) It is easy to show that:

" (43)

F_vj(n) = Y F_vO)Wy

k=1

since the input neurons are linear. Therefore, the delta for an output neuron becomes:

L : 0 L’ (44)
F_f@® = (ej(t) + ZF_V.(!+‘E));,~ ®.
=1
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Figure 10.12 Another view of the time-lag recurrent network.

Here, * indicates the delta of an appropriate neuron to which the output neuron is connected. In
equation 44, the delta propagates the required information all the way from 7 = T back to the current
time ¢; therefore, the delta rule for a time-lagged recurrent system is referred to as the backpropagation
through time (BTT) algorithm [22,40]. Likewise, we can easily define a similar rule for training
networks where equation 28 is generalized so that v' depends on x(f — 1) in addition to x(¢), as in FIR
neural networks (see section 10.4.5 and section 10.8).

10.4.1.5. Random Search Algorithm Random search methods have been widely used in classi-
cal optimization problems. It has been proven that certain random search methods can always reach
the global minimum of a nonlinear function. Baba [41] has pointed out that the random search
algorithm by Solis and Wets [42] can lead to a global minimum for training a multilayer perceptron.
Morris and his co-workers [43] have also utilized a random search algorithm (Chemotaxis algorithm)
for neural network training [44]. In these tests, Solis’ and Wets’ algorithm was used for robust training
whenever a convergence problem was encountered. This algorithm, according to its authors, ensures
eventual convergence to a global minimum of the objective function. (In actuality, of course, there
is no way to guarantee global convergence in less than exponential time; see section 10.4.6 for related
issues.) The procedure was as follows:

1. Select an initial estimate for W* and let ” = 0.

2. Generate a Gaussian random vector ¢* with a predefined variance and a mean of b".
3. IFE(W + ') < E(W*), set W' = W' + ¢* and b**' = 0.26" + 0.4¢".

4. If E(Wk + ek) 6 E(Wk) > E(Wk — €"), set W' = W* — ¢ and 6" = b* — 0.4e".

5. Otherwise, let W*' = W* and **' = 0.55".

6. Repeat step two until convergence.
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10.4.1.6. Determining the Number of Hidden Units Since sufficient hidden neurons are essen-
tial for a network to approximate a nonlinear function, the determination of the number of hidden
neurons is crucial in the training phase. Many researchers have considered this issue, although no
general and efficient method is available. In our tests, we simply used a cross-validation process as
a procedure for determining the number of hidden units. First, the number of hidden neurons for the
maximum likelihood version of the network is determined. Then, for ease of comparison, the number
of hidden units for the robust version is set equal to that of the maximum likelihood version.
The cross-validation procedure was as follows:

Split the data set into a training set and a testing set.

Start with a small number of hidden units.

Initialize all the weights to zero as discussed below.

Apply the generalized delta rule to update the weights.

Validate the updated model with the testing set.

Repeat the training process until the prediction error of the testing set reaches a minimum.
Add an additional hidden neuron to the network.

Repeat step three until adding additional hidden neurons increases the prediction error on the
testing set.

PNANR L=

In order to have a common starting point for different-size networks, all the weights are initialized
to zero when determining the number of hidden neurons. A network with all weights equal to zero,
regardless of the number of hidden neurons, will have the property that the prediction errors for both
training and testing sets are proportional to the sampling variance of the whole data set. However,
for a network with all weights equal to zero, the final results for the weight matrix will result in all
the hidden neurons being identical to each other. To avoid this problem, different learning rates are
assigned to the weights connected with different hidden neurons. In this work, the learning rate is
multiplied by a linearly decreasing factor varying with the hidden unit so that the learning rate is
actually a vector, equal to a global learning rate multiplied by (1,1,...,2/n',1/n"). Note that the bias
weight has the same learning rate as the first hidden neuron. From an optimization point of view, one
can consider that the gradient is being multiplied by the matrix diag[1,1,...,2/n',1/n"], which is
positive-definite and invertible. It is easy to prove that an optimization algorithm using such a
transformed gradient can lead to a minimum in the error.

104.2. Example Number One: A Wastewater Treatment System

10.4.2.1. Description of the System and the Network The data for this study were provided by
Pedersen, Kummel, and Soeberg [45], to whom we owe many thanks.

A wastewater treatment plant is a very complex process, especially when biological removal of
nitrogen, phosphorous, and organic material (N, P, and C) is implemented, as in the research of
Pedersen et al. [45]. The pilot plant, as sketched in Figure 10.13, is fed with clarified municipal
wastewater, in which the large particles, sand, and oils have been removed. The process is carried
out in four vessels, in which the biological removal of phosphorous, nitrogen, and organic material
takes place. The throughput of the pilot plant is on the order of 60 liters per hour. The approximate
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Figure 10.13  The process flow diagram of the wastewater treatment plant.

holding volumes of the pretreatment column (PRE), the two aeration tanks (T1 and T2), and the
sedimentation tank (SED) are 200, 800, 800, and 1,100 liters, respectively.

The feed to the pretreatment column is a mixture of raw wastewater and return sludge. The
pretreatment column is maintained anaerobic, and the main biological process is carried out by the
phosphorus accumulating bacteria. The two aeration tanks T1 and T2 are operated in an alternating
manner that is scheduled prior to the operation. The nitrification and denitrification processes take
place in these two tanks alternatively. In the sedimentation vessel, the heavier sludge falls out of
suspension. From the top of the vessel, the process effluent is removed from the system. The sludge
is returned via the sludge return pump and is mixed with the fluid entering the pretreatment column.
The sludge concentration is held approximately constant through intermittent removal of sludge from
the system at the point where it exits the sedimentation vessel. Samples are taken from four different
locations as indicated in Figure 10.13, in which SP, through SP, measure the concentrations of NH,",
NOf' and PO, in the incoming stream, the pretreatment column, the aeration tanks, and the
sedimentation vessel, respectively. The oxygen consumption rates at the aeration tanks are also
recorded. A time series of four days’ data is used to model the pilot plant. The data set is obtained by
sampling the system every seven minutes. This sampling results in nine hundred data points in total.
All the variables are linearly scaled between 0.1 to 0.9. The ranges of all the variables are given in
Table 10.2. The data is split into a training set (the first six hundred samples) and a testing set (the
remaining three hundred samples). The outputs of interest are the concentration measurements for
the three processing units (nine variables). The inputs are the concentrations of the incoming stream
and the oxygen consumption rates (five variables).

One can construct a network to model the whole plant as a 5 by 9 multi-input-multioutput (MIMO)
system. Alternatively, in this study we used three smaller networks to model the three processing



310 HANDBOOK OF INTELLIGENT CONTROL

Table 10.2 The range for each of the measurements for the wastewater plant

unit: mg/l Inlet PRE T12 SED
(NHE] 0366 4.956 0366 0061
49.51 28.934 11.768 1.147

INO% 0.000 000 0.0214 4364
11.58 824 16.290 12.50

PO 1953 11130 0.5066 6195
8.287 48.276 21.658 9.338

Table 10.3 The number of neurons for each layer of the neural network for the wastewater plant and the
catalytic reformer

PRE T12 SED |REF

input 6 8 18 21 e
hidden

output 3 3 3

units individually. The three processing units are the pretreatment column (PRE), the aeration tanks
(T12), and the sedimentation vessel. The pretreatment column is a 3 by 3 system, the aeration tanks,
5 by 3, and the sedimentation vessel, 3 by 3. A first-order dynamic model (k = 1) is chosen for PRE
and T12, and a third order for SED. The order of the dynamic model determines the number of input
neurons needed for the networks. The size of the network for each subsystem is summarized in
Table 10.3.

10.4.2.2. Results on the Wastewater Plant After the ANN is trained by the maximum likeli-
hood procedure, the one-step-ahead prediction by the ANN for each subsystem appears to be
exceptionally good. These results for the three subsystems (PRE, T12, and SED) are shown in Figures
10.14, 10.15, and 10.16, respectively. In principle, one can use these models for nonlinear model
predictive control (MPC), as described in section 10.3. In MPC, the model usually predicts many
time-steps ahead into the future. Therefore, the feedforward network, which predicts one step ahead,
has to be iterated; in other words, the network has to be chained to itself to go as far as needed into
the future. For example, if a predicted output in the future, like 9(1 + k), is needed at any time ¢, then
the predicted output 9(! + 1) has to replace the actual output ¥(¢+1) measured from the system, and
9(1 + 2) must replace Y(z + 2) and so on, all the way up to ¢ + k — 1, because the actual system outputs
in the future are not yet known. Therefore, the errors of importance to MPC are the multiperiod
forecasting errors, the kinds of errors minimized in the pure robust method. In this situation, the gap
between Y and § can grow in a cumulative fashion over time, leading to large errors.
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Figure 10.15 FFN: one-step ahead prediction for T12.
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Figure 10.16 FFN: one-step ahead prediction for SED.

As an extreme example, the maximum likelihood net (MLN) is chained to predict the future system
output all the way from ¢= 1 to £ =900, including the training set as well as the testing set. As shown
in Figures 10.17 through 10.19, the MLNs do not give consistently good results for the long-term
predictions on the three subsystems as they do for the one-step-ahead predictions. However, the MLN,
a one-step-ahead predictor, can give a fairly good long-term prediction for the T12 subsystem. For
the PRE and SED subsystems, as shown in Figures 10.17 and 10.19, the MLNs do not give reasonable
long-term predictions at all. The reason for such inconsistent results from the use of MLNs is simply
that they are not trained to make long-term predictions.

On the other hand, the networks adapted by the pure robust method are trained to predict the whole
trajectory of the system output all the way from ¢ =1 to ¢ = T (T = 600). Figures 10.20 through 10.22
show the results from the pure robust networks (PRNS) in predicting from time ¢ = 1 to ¢ = 900 (105
hours ahead). Clearly, the PRN is significantly superior to the MLN for long-term predictions,
especially for the PRE and SED subsystems. For comparison, the root mean square (RMS) of the
prediction errors for each subsystem are given in Table 10.4. Note that the prediction errors are based
on the scaled variables.

10.4.3. Example Number Two: A Catalytic Reforming System

10.4.3.1. Description of the System and the Network The data for this test came from Mobil
Corporation, whose help is gratefully acknowledged.
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Figure 10.18 FFN: long-term prediction for T12.
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Since the 1970s, the catalytic reformer has become one of the key systems in oil refineries, and
catalytic reformate has furnished a relatively high portion of the gasoline used in the United States
[46]. In catalytic reforming, the structure of the hydrocarbon molecules is rearranged to form higher
octane aromatics that can be used to increase the octane number of gasoline. The catalytic reformer
carries out four major reactions: (1) dehydrogenation of naphthenes to aromatics; (2) dehydrocycliza-
tion of paraffins to aromatics; (3) isomerization; and (4) hydrocracking. Catalyst activity is reduced
during operation by coke deposition and chloride loss, and it can be restored by chlorination following
high temperature oxidation of the carbon,

A typical catalytic reforming process consists of a series of reactors and heaters, and a fractionator,
as shown in Figure 10.23. The typical feed to a catalytic reformer is the heavy straight-run (HSR)
gasoline and naphtha. Material that will deactivate the catalyst is removed prior to the process. The
pretreated feed and recycle hydrogen are heated to about 900° F before entering the first reactor. In
the reactors, the reactions will cause temperature drops. The effluent from a reactor has to be reheated
to maintain the reaction rate before it enters the next reactor. As the flow goes down the reactors, the
reaction rate decreases and the reactors become larger, and the reheat needed becomes less. Usually
three reactors are enough to provide the desired degree of reaction. The effluent from the last reactor
is cooled and separated into hydrogen-rich gaseous and liquid streams. The gaseous stream is recycled
to the first reactor and the liquid stream is sent to the fractionator to be debutanized. The reformate
is drawn out from the fractionator.

The data for the catalytic reforming system (REF) contains five inputs (denoted by «’s) and two
outputs (denoted by Y’s). Due to a secrecy agreement, the detailed description of the measurements
and the range of each variable are not given. As with the wastewater plant, the variables taken from
the reformer are linearly scaled to between 0.1 and 0.9. The data contains 392 data points in total, of

net hydrogen

4 e
fuel
hydrogen - gas

%:g; hot oil
= s
naphtha é} _
cJ::g. reformate
hydrogen
separator

heaters & reactors stabillzer

Figure 10.23 REC: long-term prediction for PRE.
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Figure 10.24 FFN: one-step ahead prediction for REF.

which the first 252 points are used for training and the remaining 140 for testing. In this case, a
third-order 5 by 2 model is used. The size of the network used here is described in Table 10.3.

10.4.3.2. Results on the Catalytic Reformer In the case of one-step-ahead prediction, the net-
work trained by the conventional maximum likelihood approach predicts the testing set of the catalytic
reformer as well as it did with the wastewater system (Figure 10.24). However, it did not perform as
well in tests of multiperiod predictions. In the most extreme test, the network was chained to make
long-term predictions from ¢ = 1 to ¢ = 392 (including both training and testing sets). As in the
wastewater example, the maximum likelihood network (MLN) performed much worse on these tests
than it did for one-step-ahead prediction (Figure 10.25). Strictly speaking, one should notuse an MLN
for multiple-step predictions since it is trained to make single-step predictions. The multiple-step
prediction requires iteration or chaining, and conventional maximum likelihood training does not take
such chaining into account. On the other hand, the pure robust (PRN) version of the network was
trained to make long-term predictions. After training, it gives much better results than the MLN for
long-term predictions (Figure 10.26). For comparison, the RMS of the prediction errors for the
reformer are given in Table 10.4. Notice that the prediction errors are calculated based on the scaled
variables.

10.4.4. Overall Evaluation of Performance and Implications

As described earlier, networks trained by conventional maximum likelihood procedures and networks
trained by the pure robust method were used to make long-term predictions. The number of prediction
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Figure 10.25 REC: long-term prediction for REF.
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Table 10.4 RMS prediction errors for the wastewater plant and the catalytic reformer

(a) the wastewater plant
unit: 1/100 PRE T12 SED
one-step ahead NH} 35 4.3 28
FFN  training NO%™ 5.2 3.8 39
POT 3.6 3.2 , 1.7
NH3 1.5 3.1 3.8
testing NO%™ 4.1 24 1.7
PO} 4.0 1.8 2.8
long-term NH} 453 12.5 313
FFN  training NOY™ 13.6 8.5 217
POY 470 10.0 18.7
NH} 43.1 10.2 23.6
testing NO%™ 12.0 8.6 11.8
POY 54.8 74 18.5
long-term NH} 4.0 4.5 ‘ 8.1
REC training NO%~ 5.7 5.6 7.0
PO3" 5.1 53 42
NH} 4.0 9.5 114
testing NO%™ 38 6.0 6.2
POT 18.8 70 7.0
b) the catalytic reformer
training testing

unit: 1/100 yi Y2 i | y2
FEN (1-step ahead) 8.2 9.1 5.5 ( 6.2
FEN (long-term) 104 14.5 8.6 __ 125
REC (long-term) 8.6 9.9 5.6 6.3

steps (i.e., prediction horizon) was equal to the total number of samples: 900 for the wastewater system
and 392 for the catalytic reformer. However, if the networks were used for model predictive control,
the prediction horizon would be much smaller, e.g., twenty or thirty steps ahead into the future. It is
important to know how well both networks perform within a smaller prediction horizon. In this
example, the width of the prediction horizon, p, is varied from 1 to 30, and the prediction errors are
calculated for p = 1, 5, 10, 15, 20, 25, and 30. The RMS prediction errors are plotted against p in
Figure 10.27. Notice that the prediction error is calculated only at the end of the prediction horizon.
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The RMS errors are calculated for all data points in the testing set: 300 for the wastewater system
and 140 for the reformer. In order to predict the first p points of the testing set, training data that
immediately precede the testing data were used for predictions. As shown in the figure, the prediction
errors of a maximum likelihood network increase significantly as the prediction horizon becomes
large, whereas those of a pure robust network are more stable. Although in some cases a maximum
likelihood network gives results similar to a pure robust network (e.g., Figure 10.27f), the pure robust
network gives consistently better results than a maximum likelihood network in cases where p > 5.
The reason is that conventional maximum likelihood training is based on minimizing errors in
one-step-ahead predictions. On the other hand, pure robust training minimizes multiple-step predic-
tion errors.

Even though the pure robust network is normally trained over the whole trajectory of the training
data, it can be trained over a smaller trajectory [47]. For example, if the prediction horizon in MPC
contains p time steps, we can train the net over a trajectory of p time-steps [48]. In this case, one can
set up a moving window of width p along the whole training set. The network is then trained over the
trajectory within this moving window. This approach results in a case of semibatchwise backpropaga-
tion through time. A similar effect may be obtained at lower cost by using the compromise method,
to be discussed in section 10.4.6.

In summary, robust training is more appropriate than conventional training for ANNSs to be used
in model predictive control.

10.4.5. Alternatives to the MLP in Control Theory and Neural Nets

10.4.5.1. Summary The empirical results of sections 10.3 and 10.4 were all based on the
multilayer perceptron (MLP)—a very simple form of ANN. Many control theorists have argued that
MLPs are essentially static models, and that true system identification requires more dynamic models
analogous to those used in control theory. This argument is correct in principle; however, there are
alternative forms of ANN that provide nonlinear generalizations of the usual dynamic models.

In practical applications, simple ANNs are often good enough. In some applications, simple MLPs
cannot forecast Y(¢ + 1) well enough, but the problem can be solved by a simple change of variables
(e.g., forecasting ¥(t + 1) — Y(?) rather than ¥(¢ + 1) [49]). This subsection will discuss alternative
models and functional forms for use in applications where MLPs are not good enough. When an MLP
model appears adequate at first, but leads to limited capabilities in control applications, then it is
important to reexamine that model (as we did in section 10.3), and to consider using an alternative
model or adaptation procedure.

10.4.5.2. Classical NARMAX and Kalman Models Among the models used in control theory
and statistics, one of the better known is the classical NARX (Nonlinear AutoRegressive model with
eXogenous variables) model, which may be written:

P = F¥@-1), ..., Y@ -k),ut=1), ..., ut-k), W), (45)

where k is the order of the model and W is the set of model parameters.
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Figure 10.27 Prediction errors (RMS) vs. p for a FFN and a REC. Notice that there are 300, 300, 300, and 140
data points in the testing set of PRE, T12, SED, and REF systems, respectively. The RMS errors are calculated
based on the scaled variables in all cases.

In order to represent a general NARX model, we need to use a class of models that can represent
any arbitrary function F; since MLPs can approximate any well-behaved vector-valued function F,
they can represent a general NARX model if their inputs and outputs are arranged as in equation 45.
The resemblance between equation 45 and equation 20 should make it clear that MLPs can do justice
to this class of model. (Strictly speaking, however, there are many nonlinear functions that can be
represented more parsimoniously by adding a feature called “simultaneous recurrence,” which is
discussed in section 10.4.6.4. Simultaneous recurrence is one more technique for improving perfor-
mance at the cost of doing more work, a technique that can be used to upgrade any of the models to
be discussed in this section.)

In their classic introductory textbook [50], Box and Jenkins discuss a variety of stochastic process
models, including the AR(p) model, based on a special case of equation 45:

Y() = wi¥(t— 1) ... + w,X(t - p) + e(t), (46)



322 HANDBOOK OF INTELLIGENT CONTROL

where e(f) is arandom number with a Gaussian distribution. They also discuss the ARMA(p, q) model,
which may be written:

YO = wY(t—=1) ...+ w,Y(t—p)+e(t) + Oe(t— 1)+ ... + Oe(t - q). (CY))]

In theory, an ARMA model of finite p and q can always be represented by an equivalent AR model
of infinite order. Superficially, this suggests that AR models (and their nonlinear generalizations) are
always good enough to model any process. However, the need for an infinite number of parameters
is of enormous practical importance. In any form of identification or estimation, the speed of learning
and the quality of generalization (i.e., the estimation errors after a finite database of experience)
depend on the number of parameters to be estimated; it is important to reduce the number of
parameters as much as possible. Therefore, when there is a possibility that the system to be identified
is an ARMA process, it is important to use an ARMA specification or the equivalent.

Box and Jenkins [50] explain how an ARMA (1, 1) process results very simply from an AR (1),
process observed through measurement noise, as in:

Xt = wX(t—1)+e(t) ‘ (48)
Y(1) = X(1) + ex(1), (49)

where ¢, represents random noise in the system to be controlled, and e; represents measurement error
in observing that process. If the variable Y is observed but the variable X is not, then the behavior of
Y over time fits an ARMA (1, 1) model (albeit with different parameters). The general state-space
model of linear control theory is simply a multivariate generalization of equations 48 and 49;
therefore, it leads to a vector ARMA process. This is the reason why models of the ARMA type are
of great importance in control applications. In order to deal with nonlinear problems, authors like
Leontaritis and Billings [51] have recently advocated the use of NARMAX models, which may be
written as:

by = Foee-1y, ..., Yt -p)u(t=1), ..., u(t-p), et=1), ..., e(t = q)), W), (50)
where:
er) = Y(n) - ¥ (51)

is a random vector.

An alternative, equivalent way to cope with measurement noise in the linear case is to use Kalman
filtering [52,53]. Instead of just modeling the observed vector, Y, one may try to estimate the
underlying state-space vector, which we will denote as R. (In control theory, the state-space vector
is usually denoted as x, but there are advantages to using a different notation with ANNs.) We arrive
at a model that may be written:

P = HRQ)
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R(t) = AR(t - 1)+ Bu(p) (52)
R() = R+ M(x(r) - R0,

where # and R are forecasts based on prior data, and R is our best guess as to the true value of R at
time ¢, after the measurements from time ¢ are available. H, A, B, and M are matrices of parameters
of the model. One consistent way to estimate the parameters in this model is simply to minimize the
square error in predicting Y(7). (Strictly speaking, this model does contain redundant parameters,
which makes the error-minimizing values nonunique; however, this is not a problem unless there is
some other reason to want to estimate specific hidden variables. For example, if one of the unobserved
variables represents temperature, and high temperatures cause melting behavior outside of what the
linear model predicts, one then needs to use more than just empirical data on the observed variables
from normal operating regimes.) There are nonlinear extensions of Kalman filtering, but many
researchers consider them cumbersome and less than completely satisfactory.

10.4.5.3. Time-lagged Recurrent Networks (TLRNs) The simple ANN models of sections
10.3 and 10.4.1—which are a special case of the NARX model—cannot effectively subsume the
NARMAX or Kalman models above. However, there is a class of ANN models, developed by Werbos
[21,34,54], which can subsume those models: the time-lagged recurrent network (TLRN). In effect,
the TLRN provides an efficient nonlinear generalization of the Kalman filter, when our goal is to
estimate the state vector or to predict Y(f) over time. Unlike the classical ARMA models, the TLRN
does not provide a general scheme for describing the probability distribution for alternative possible
values of Y(¢); to make that generalization, see the discussion of the Stochastic Encoder/Decoder/Pre-
dictor in Chapters 3 and 13.

In the neural network literature, a “recurrent network” refers to any ANN in which a neuron can
use its own output as one of its inputs, or, more generally, in which the flow from inputs to outputs
may contain loops. There are two fundamentally different kinds of recurrence [54], each of which
has its uses: (1) simultaneous recurrence, discussed in Chapters 3 and 13; and (2) time-lagged
recurrence. In time-lagged recurrence, we simply allow any neuron at time ¢ to receive, as input, the
output of any neuron at time ¢-1. It is trivial to allow inputs from times ¢ — 2 through to ¢ — k as well
[22], but this does not really add any generality in practice; lags greater than 1 can be represented
quite effectively by bucket brigades or exponential decays within a lag-1 structure.

The most classical form of TLRN is a multilayer perceptron, MLP, modified to allow crosstime
connections. The equations are:

x(0) = X(0) 1<i<m (53)
i-1 N+n (54)
Vi) = 3, W)+ Y, Wix(t—1) m+1<i<+N+n
= =1
x(f) = sit) m+1Si<N+n (55)

Y = xumd 1<i<n (56)
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where x, represents the constant 1, where N+n is the total number of neurons, where X is the vector
of all inputs at time ¢ (usually made up of Y(¢ — 1) and u(#)), and where m is the total number of input
neurons. In practice, it works best to delete (or “zero out” or “prune” most of the weights W and W,
but equation 54 indicates the full range of connections that are allowed.

In this arrangement, it should be possible to represent the estimated state vector, R, through hidden
nodes in the network. Any set of filtering equations could be approximated as well as desired by the
subnetwork that leads up to the calculation of those nodes. One can adapt this entire system by
minimizing square error, exactly as in basic backpropagation. It is straightforward to calculate the
relevant derivatives (either for maximum likelihood estimation or for the pure robust method) through
the use of backpropagation through time; see Section 10.8.

10.4.5.4. Sticky Neurons and Their Capabilities Time-lagged recurrence can yield two addi-
tional capabilities, which can be very important in intelligent control:

* “Short-term memory”—the ability to account for phenomena observed many time periods ago,
which are not currently observable but are still currently relevant. For example, the person who
turns away from a loose tiger—to run—needs to account for the presence of a tiger behind his
back even though he can’t see the tiger any more. Likewise, in manufacturing, short-term
memory allows you to account for the properties of the last part you made even as you adapt to
making a new part.

* The ability to estimate slowly varying process parameters. The need for this is one of the real
motives behind classical adaptive control.

In both cases, recurrent hidden nodes can provide the required memory or parameter estimates, in
principle. However, the specification in equation 55 does not provide enough stability to make this
realistic. An alternative specification [35], inspired by discussions of the Purkinje cells of the
cerebellum, is the “sticky neuron” defined by:

-1 Nin (57)
Vi) = 3, Wixd0) + 3, Wit —1).
il i

When W,/ = §;, this system becomes extremely stable, stiff, or sticky. Because it is even stiffer than
the usual TLRN, the user is advised—once again—to first adapt a less stiff or less general version of
the network in order to arrive at good initial values for the weights. In some cases, one might initially
fix the W,/ to §; or to 0.9;, and then adapt these sticky weights only after the other weights have
settled down. One might use the gradient-based learning rate adjustment scheme, discussed in
Chapters 3 and 13, to adapt a different learning rate for the sticky weights. For system identification
applications, one might even consider a more extreme form of sticky neuron, also suggested by
Werbos [35]:

vit) = vit= 1)+ 3, WYt - 1) - ¥ - 1). (8)

As with other forms of TLRN, it is straightforward to adapt these networks by backpropagation.
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10.4.6. Beyond the Pure Robust Method: Alternatives,
Earlier Work, and Research Opportunities

10.4.6.1. Introduction The goal of this section was not to promote the idea of using the pure
robust method in any and all problems of system identification. Up to this point, we have simply tried
to prove, with real-world examples, that neural network applications can yield much more useful,
practical results if we go beyond the conventional approaches to training or estimation. The pure
robust method is a first step in that direction, but there are enormous opportunities available to other
researchers who choose to go beyond that first step. It is very sad to see hundreds of papers in the
neural network field and the control theory field that contribute relatively little either to improving
our arsenal of usable, practical tools, or to deepening our fundamental understanding. At the same
time, we see numerous opportunities here—largely neglected—to achieve both things at the same
time, simply by paying more attention to certain basic issues.

The main goal of this subsection will be to describe these opportunities in more detail. The key to
these opportunities is to bring together and apply certain ideas that already exist in various strands
of control theory, statistics, neural network theory, information theory, epistemology, and elsewhere.
A perfect synthesis of these ideas would lead to mathematical algorithms that are impossibly complex
to apply in the real world; however, there are plenty of opportunities to proceed in a step-by-step,
empirical fashion, applying one idea at a time, improving one’s approximations one step at a time,
as is common in neural network research and practical engineering. We ourselves do not claim to
have extracted the full potential of this approach.

This subsection will proceed as follows. First, for the practical and impatient researcher, we will
discuss the compromise method—one step beyond the pure robust method—and the empirical work
to date on the compromise and pure robust methods. Second, we will briefly discuss the issue of
adaptation in real time. Third, we will describe the four successive levels of theoretical analysis that
were used to develop the compromise method, and their relations to other issues and methods related
to intelligent control:

The maximum likelihood approach;

The Bayesian (prior probability) approach;
The utilitarian (loss function) approach;

A modified utilitarian approach.

Bl ol

A deeper, more rigorous reevaluation of this analysis would presumably lead to methods more general
and more powerful than the compromise method. Section 10.4.6.4 will describe some preliminary
efforts on these lines, and the new approaches that result from them. Likewise, there are a host of
similar methods and approaches developed in the field of control theory [31] that could be reevaluated
more deeply and extended to the neural network case. Statisticians often disparage the relatively ad
hoc, empirically motivated methods one often finds in sources like the Journal of Forecasting;
however, empirical results of that sort—if analyzed at a deeper theoretical level—could also be very
useful in guiding us towards more general methods.



326 HANDBOOK OF INTELLIGENT CONTROL

10.4.6.2. The Pure Robust Method, the Compromise Method, and Earlier Work The first
experiments with the pure robust method were motivated by an attempt to fit a political forecasting
model to empirical data back in 1972 [3]. Previous attempts using multiple regression (i.e., conven-
tional maximum likelihood estimation and an ARX model) had led to very poor forecasting results
in split-sample multiperiod forecasting. There was reason to believe that the available data on the
relevant variables—nationalism and political mobilization data going back up to two centuries—
might be subject to some measurement noise. Based on maximum likelihood theory, Werbos fitted
a simple vector ARMA (1, 1) model—similar to equations 48 and 49, but with complex nonlinear
exogenous variables added as well. Just for the sake of comparison, Werbos also deleted the process
noise term (e;) and estimated the “measurement-noise only” model—which is equivalent to the pure
robust method. (The vector ARMA model was estimated by backpropagation through time.)

The surprising result was that the pure robust method cut forecast error in half, compared with the
ARMA model. From a classical maximum likelihood viewpoint, this shouldn’t happen. A more
general model—such as the ARMA model—should do at least as well as the more specialized model,
at least if the parameters were significant (they were), and if there were some reason to expect the
presence of process noise (there was). The ARMA model, by contrast, reduced prediction errors by
only about ten percent compared with multiple regression.

To test these results, Professor Mosteller of Harvard recommended a set of simulation studies.
Werbos performed multiple simulations of two different dynamic processes, each with six different
noise generators attached. The first process was:

X(t+1) = (LO3)X()(1 + ex(r)) (59)
Y(1) = X()(1 + ex(1)) (60)

The second dynamic process was similar, except that equation 59 was replaced by:
X(e+1) = (38X(f) + 35X(r — 1) + 3X(t - 2))(1 + e (1)) (61)

The six noise processes chosen for e, and e; involved Gaussian white noise, Gaussian white noise
with random outliers in five percent of the cases, and dirty noise with correlations over time. Each
combination of noise process and dynamic model (twelve combinations in all) was simulated ten
times, yielding simulated time series of two hundred observations each. Broadly speaking, the ARMA
model did indeed cut the prediction and estimation errors by a factor of two compared with multiple
regression on the simulated data; however, the pure robust method cut the errors in half yet again.
The dirtier the system, the bigger the differences; however, even with the simplest systems, the
ranking of the methods was still the same [3].

Despite these results, it was obvious, intuitively, that the pure robust method would not be the ideal
method to use under all circumstances. For example, in equations 59 through 61, there is an underlying
exponential trend to the data, which makes it possible for a forecasting model to track the overall
trajectory of the data over long time intervals. This is not always the case. For example, consider the
process:
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Xt+1) = X(&) +W+eln) (62)
Y(&) = (sin X(1)) + ex(s).

If the noise, e,(#), is small, it should be possible to track this process by using any model that is capable
of outputting a sine wave—but only for a certain amount of time. As the time series grows longer,
the random phase shifts will always ensure that the later part of the data will get out of phase with
the earlier part, so that comparison between predicted and actual values at large times # will always
show large errors.

In cases like equation 62, we do not need to go all the way back to the nonrobust AR (1) or ARMA
(1, 1) models. For example, we can try to minimize multiperiod prediction errors, but limit ourselves
to a time horizon of p—a parameter we must pick very carefully. Alternatively—and at lower
cost—we can use the compromise method, proposed in [3] as a way to deal with these kinds of
situations.

In the compromise method, we minimize a measure of error, E, , which is defined by the following
system of calculations:

Y(t) = F(Y(t— 1), ..., Y(t -p)u, W) (63)
Yit) = (1 - w)¥() + wix(n (64)

T (65)
E. = Y, L, Y(0), w),

where F represents the forecasting model or ANN, where u represents all the various exogenous
variables at various times, where W is the set of model parameters or weights, and where w (made up
of components w; ) is a vector of additional parameters or filtering constants. When w = 0, then the
compromise method reduces to the pure robust method. When w =1, it reduces to conventional
maximum likelihood estimation. (If you feel nervous about your implementation of the compromise
method, you can check to make sure it matches the simpler methods in those cases.) A w of 0.01
would, in effect, yield a delay time of seventy time periods in equation 64, and be very similar to
minimizing the 70-period prediction error. If we pick w so as to minimize the conventional loss
function:

Lb, vy = Y (v - T, (66)

then the compromise method reduces to something like a special case of nonlinear Kalman filter-
ing—which, by its equivalence to ARMA estimation, loses the robustness feature we are looking for.
After some contorted analysis, Werbos [37] developed an alternative loss function:

o1 —lwh)?

i
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which led to superior performance on political data that were so noisy that the pure robust method
. did not work very well. In analyzing these results, Werbos suggested an alternative loss function:

L= 3 O ' Z0) (68)
~ oy(1—lwil)’
In these tests, w; was restricted to the interval (0, 1).

The model used in these tests was an upgraded version of a model then used by the Joint Chiefs
of Staff for global long-range strategic planning [37]. The compromise method with the alternative
loss function led to a reduction of multiperiod prediction error that was only about twenty-five percent
for the political conflict variables (such as revolutions in Latin America), which were extremely
difficult to predict in any case. It led to a fifty percent reduction in error in predicting GNP, both in
the Latin American study and in a follow-up study of U.S. economic data (based on a simple model
of the U.S. economy developed by Kuh). Several unpublished student papers at the University of
Maryland showed similar reductions of error.

The biggest advantage of the compromise method is its ability to shift smoothly—to a different
extent for different prediction targets—between the extremes of conventional adaptation and pure
robust adaptation. In conventional statistics, it is often good enough to give the user two extreme
estimation methods and provide guidelines for which method to use when [56]. In intelligent
control—where many variables need to be predicted, and the decision needs to be automated and
changeable over time—something like the compromise method is essential. This kind of smooth
variation between a classical approach and a worst-case or robust approach can be implemented on
many levels in the design of a robust system.

The loss functions in equations 67 and 68 appear useful, according to the empirical results so far.
However, no one has attempted a neural network application as yet. Because of the gross approxi-
mations made in deriving these loss functions, there is every reason to believe that you, the reader,
could come up with something similar but better—especially if you revisit the theoretical issues to
be discussed below. On the whole, equations 67 and 68 appear very effective in nudging the w;
parameters closer to 1 when they are already close to 1; however, they do not have such a strong
effect on values of w; which are close to 0. Also, it may be useful to weight the errors for different
variables in a different way; for example, for models embedded within an adaptive critic control
system, one might weight the error in predicting Y; according to the RMS average of the derivative
of J with respect to Y.

10.4.6.3. Real-time Learning Section 10.8 will describe how to implement the compromise
method in an off-line mode, using backpropagation through time. All of the models and identification
methods in this chapter boil down to minimizing an error function over time, in the presence of time
lags. To implement these methods, one basically needs to calculate the derivatives of error with
respect to the weights or parameters. Therefore, for real-time adaptation, one basically needs a method
that moves forwards in time, to calculate the same derivatives that are normally calculated by
backpropagation. (In some real-time applications, it may be useful to develop an off-line model first,
in order to develop useful hidden variables; these variables, in turn, can be input to a more static
real-time network.)
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One can calculate the derivatives exactly in forwards time by using the forwards perturbation
technique [20], which was later called the “Williams-Zipser” method and “dynamic backpropaga-
tion”; however, the resulting calculations are N times as expensive as backpropagation through time.
If N is small, this may be useful. If it is large—as in biological systems—the method becomes
hopelessly unrealistic. See Chapter 5 for more details. Section 10.6 may help in using [20].

Alternatively, one can simply truncate the derivatives, as suggested by equation 25; however, this
dramatically reduces robustness over time because it totally ignores the connections over multiple
time intervals.

Finally, one can approximate the derivatives in a consistent way by using the Error Critic design,
presented in Chapter 3. The present chapter gives a variety of error functions different from the
example in that chapter, but the extension to alternative error functions and functional forms is
straightforward. We would speculate that the human brain itself is based on such an extension.

10.4.6.4. Basic Principles and Derivation of the Loss Function for the Compromise Method
Once again, the compromise method evolved in response to empirical results. The approximations
used to derive it were very drastic and can be improved upon (or made more adaptive). Before
understanding the robust approach, theoretically, it is necessary to review some earlier approaches,
which will still be important to future research.

The early work by Werbos [3] was initially based on the classical Bayesian approach to parameter
estimation. In that approach, one begins by formulating a stochastic model, such as equations 48 and
49 or equations 50 and 51. (Nearest-neighbor systems or spline models can also be formulated as
stochastic models, but it takes some care to avoid logical inconsistencies.) One tries to find that set
of parameters, W, that have the highest probability of being the true set of parameters, based on what
we know after accounting for the available data; in other words, we try to maximize the conditional
probability Pr (W| data).

The first deep problem for theorists in parameter estimation is the fact that Pr (W| datay is not
really well defined in an objective manner. From Bayes’ law, it is well known that:

Pr(W|data) = £ '(da;‘:(ii:al; W) (69)

On the right-hand side, only one term, the “likelihood term”—Pr (data | W)—is well specified, for
any well-specified stochastic model. We can ignore the term Pr (data) because it does not affect our
maximization with respect to W. The third term—Pr (W)—represents our prior assessment of the
probability of different parameters, our assessment before any data become available. No matter how
large our database, this term is still present, and it has been a source of deep and persistent confusion
even in practical applications. ﬂ

In the maximum likelihood approach—as practiced by most engineers—one tries to be “scientific”
by assuming that all sets of parameters are equaliy likely a priori. This simply wipes out the Pr (W)
term. By maximizing the likelihood term itself, one has a direct recipe for calculating what appears
to be an optimal estimate of all parameters. Given a perfect model and an infinite database (with
enough variety of the input variables), this approach will eventually converge on the optimal
estimates.
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Practical users of statistical methods, beset by limited data, usually recognize the need to account
for specific, prior information they have about the variables they are trying to predict. For example,
econometricians have long grappled with the problem of how to reconcile empirical, statistically
based models with first-principle, engineering-based models [56]. Typically, econometricians do not
try to quantify their prior probabilities, Pr (W), and use a Bayesian regression routine. They use their
prior information to guide them in setting up alternative stochastic models; they use it again, after
performing maximum likelihood estimation, to select the final model and to “tweak” its parameters
[56]. Methods like backpropagation could be used as part of this process to adapt or calibrate
parameters in complex first-principle models in a more automated way.

There is another kind of prior information, above and beyond our knowledge of specific variables,
that is extremely important to fields like neural networks and intelligent control. To explain this
crucial point, we will begin with an example.

In the neural network field, we often try to “learn” the mapping from a vector X to a scalar Y.
Suppose, for example, that the vector X had twenty different components, and that we can distinguish
ten possible values for each of these twenty variables. Thus, to specify Y as a function of X, we would
need to know the values of Y for each of 10?° different points. Even if we do not assume the possibility
of noise, we would need a huge amount of data even to begin learning the mapping. It is this kind of
impossible-looking problem that makes the purist variety of theoretician give up and hide, thereby
leaving the deep and important theoretical questions to people like engineers.

To cope with these kinds of practical problems, we need to exploit the fact that not all functions
are equally likely a priori. The real world tends to have certain properties of smoothness, of similar
values in nearby points, of sparse connectivity, of symmetry, of global order, and so on. In the real
world, simpler models (or, equivalently, models with a lot of the parameters zeroed out) are more
likely to be true or robust than are complex models. Deep philosophers have recognized for centuries
that this principle—Occam’s Razor—is essential to human learning and induction. (Indeed, one can
argue that Occam’s work had a very substantial effect on subsequent human history, particularly on
science and religion.)

Our first deep challenge, then, is to formulate Occam’s Razor in a more operational way, which
is truly useful in adapting ANNs (or other models) in the real world. The Razor must be sharp enough
to prevent floundering with overly complex models, but dull enough to allow our system to be truly
“open-minded”—able to adapt to a wide variety of possible environments. Good ANN researchers
already know that simpler nets lead to better generalization, but we need to make this knowledge
firmer and more operational.

This challenge was met successfully in the field of classical AI by the work of Solomonoff in the
early 1960s [57]. Solomonoff proposed that the a priori probability for any model should be ev,
where k is some constant and § is the number of symbols required to describe the model as a program
in some kind of basic Turing machine. Because any Turing machine can be programmed to mimic
any other kind of Turing machine, with a finite program (using, say, S, symbols), we are guaranteed
that such a system could “learn” to change its language after acquiring only S, pieces of information.
In effect, Solomonoff proved that such a system would be invariant to the initial choice of modeling
language; thus, it would be truly open-minded in an important way. Solomonoff’s work is of enduring
importance, even to ANN research, but—like much of classical AI—it mainly focuses on Boolean
variables. For our purposes, we need to extend the concept further to deal with models of continuous
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variables. We need to account more concretely for phenomena like local smoothness, forecasting by
analogy, and so on.

In neural network theory, it is important that the multilayer perceptron (MLP) does not live up to
Solomonoff’s notion of a Turing machine or Turing language. A Turing machine has the ability to
write out to a kind of “blackboard” or “tape,” which it can later read back and reanalyze, all as part
of the calculations it makes before outputting a single forecast. The simultaneous-recurrent network
does have the ability to perform multiple calculations, inputting its own outputs, as part of a single
computation cycle (see Chapter 13); therefore, it is very close to fulfilling Solomonoff’s requirement.
It is not quite perfect, because the number of cells in the network is finite, whereas a true Turing
machine is allowed an infinite blackboard. To completely live up to Solomonoff’s results, a system
must be able to engage in overt symbolic reasoning with the aid of unlimited paper and computer
support; this kind of symbolic reasoning can be learned by neural networks (e.g., the networks in the
brain), but it may well be impossible to implement it on a lower level as part of the neuronal hardware
[15].

When we insert the Solomonoff priors back into equation 69, and take logarithms on both sides,
we end up with an interesting recipe for parameter estimation. We are asked to minimize the sum of
two terms: (1) the log likelihood, which can be described as the residual entropy of the database after
the model is available; and (2) the kS term, the entropy or information content of the model. This
provides a rational basis for the notion of minimizing “total entropy” or “total complexity,” a
well-known approach in information theory. Theorists like Solla [58] and Kazakos [59] have tried to
apply this approach in the neural network field; however, Kazakos has stated that there are many
insights and ideas about complexity measures and robustness in journals like the JEEE Transactions
on Information Theory that have yet to be fully used or appreciated in system identification (e.g., see
[58]).

Economists and statisticians have also developed formulations of Occam’s Razor for use in the
linear case. Economists often find themselves with data on a very limited number of time points, for
avery large number of variables. They have been forced to develop ways of coping with this problem.
There are two major techniques in common use:

1. Ridge regression, which effectively penalizes large estimates of parameters
2. Stepwise regression (by hand or automated), in which parameters are deleted (zeroed out)
when they fail a basic test of “statistical significance™

The well-known statistician Dempster [60] has given a thorough review of these techniques and their
many (less effective) competitors. Most of them have analogues in the neural network literature.

In ridge regression, one assumes that the parameters themselves—W—come from some sort of
Gaussian distribution. Instead of assuming a priori that the variance of that distribution is infinite (as
in maximum likelihood theory), one tries to estimate the variance of this distribution. This is called
the “empirical Bayes” approach. Clearly, this general flavor of approach could be used more generally
to help us generate prior probabilities of ANN adaptation. In practice, ridge regression asks us to
minimize an error function;

Y @’ +kY, (W), | (70)

i
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where k is another parameter to be estimated in another way [60]. It is straightforward to apply this
method directly in ANN research (as first suggested in [34]), but it may be possible to do better yet.
One can argue that equation 70 is too “closed-minded,” in a sense, about large parameters; that it does
not adequately value the zeroing out of parameters (which is also important [60]); and that it does not
reflect the tendency for the weights affecting a given target to vary considerably in size. To account
for such concerns, one might, instead, assume a lognormal probability distribution, which leads to
an error function:

1 71
;<e<t»2 +k 2 log 7k (71)

This kind of error function reflects the usual practice in econometrics of zeroing out parameters that
are only one standard deviation or so away from zero. The constant k can be adapted by techniques
similar to those of Su, described earlier in this section. Because the term on the right has a powerful
effect in zeroing out some weights, one must take care in developing initial weights, as with the other
methods in this chapter. In the limit [34], one might give greater credence (a smaller k) to connections
between neurons in similar “clusters,” etc. In the ANN field, there is recent work on input compres-
sion, by Cooper, and on B-spline methods, which may be significant and novel here.

In any event, the statistical profession has firmly established the validity of minimizing modified
error functions that include a direct reference to the parameters or weights of a model.

Unfortunately, the sophisticated Bayesian or Occamite approach above was still not enough to
explain the empirical results discussed in section 10.4.6.2. ARMA models were estimated with
significant t-ratios and F-ratios, which suggested that the full model should be used in forecasting;
however, the pure robust method still did better, both in multiperiod forecasting and in parameter
estimation, with empirical and simulated data.

To explain or exploit these empirical results, one must move up to a more sophisticated theoretical
approach—the “robust estimation™ approach [30].

In robust estimation, we give up the assumption that our original stochastic model will in fact be
“true,” in some objective sense, for some set of values for the parameters W. We assume that our
stochastic model will typically (though not always) be a highly simplified description of a more
complex reality, regardless of whether that model is an ANN or a first-principle model. We try to
adapt or estimate that model so that it will do a good job of forecasting (or control) despite that
limitation.

Some theoreticians have argued that robust estimation should never be necessary. If our stochastic
model is not good enough—as determined by any objective measure of how the model fits the
data—we should simply change it until it is good enough. In actuality, the real process we are trying
to identify may simply be too complex to make this a workable strategy. If there are many, many
objective measures available, the complexity required to account for all of them may make it difficult
to avoid large estimation errors. Still, this approach should not be discarded altogether. In fact, the
pure robust method could be viewed as one way of implementing that approach. The pure robust
method may be seen as akind of complex objective measure or diagnostic used to evaluate a stochastic
model; if we find that it is possible to do significantly better in multiperiod forecasting than the original
model suggested, we may then choose to stay with the pure robust (or compromise) method. This
kind of reasoning may well be useful as a guide to tuning the filtering parameters, w; , in the
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compromise method or in various extensions of the compromise method. Still, we have to ask what
to do when our diagnostic does tell us that better long-term forecasting is possible. Direct use of the
robust methods is the obvious choice. We wouldn’t want to add a lot of terms to the old stochastic
models to make them fit better, simply because those models did, in fact, forecast poorly over long
time intervals. There may be other possible responses, however, that may merit further research.

In robust estimation, our biggest challenge is to find workable ways of estimating a model that do
not assume that its stochastic version is true. There is a huge literature on how to do this when a
stochastic model is almost true, when we assume that the equations of the model are true but that the
noise may not come from a Gaussian distribution. Those methods still assume that the noise is “clean”
(i.e., uncorrelated). For the more general case, we are aware of only two workable approaches to
robust estimation: (1) a utilitarian-based approach; (2) an approach based on minimizing parameter
errors. From an Occamite point of view, the best procedure would be to always consider the set of
all possible models, instead of just one model; however, even if we do maintain a handful of
alternative models, we still need to use robust estimation techniques for each of that handful. (In
effect, each explicit model must be used to integrate or represent a large set of models we cannot
afford to be explicit about.)

The utilitarian approach has been around for a very long time. As an example of this approach,
suppose that we are trying to forecast a single variable. Suppose that we are trying to predict the
savings rate, s, of different households, as a function of income and other variables. The savings rate
is defined as total savings (S) divided by disposable income. We expect that the noise in this process
will not be a function of income or other variables; thus, for people earning $1,000,000 per year, our
forecast may be off by ten percent or so—3$100,000—but for people earning $10,000 or so we expect
errors on the order of $1,000. A maximum likelihood statistician would tell us to minimize the error
function:

E = Y (s(5) - S (72

A utilitarian economist might instead try to minimize the loss function:

L= ®»-30" (3)

The utilitarian would argue that the cost of an error (in many applications of this model) would depend
on the size of the error in dollars; this justifies giving greater weight to observation where more dollars
are involved. He would argue that there are two sets of parameters out there in the real world—the
parameters that minimize E and the parameters that minimize L; for his application, it is L that matters,
so he prefers to use a procedure that is consistent with-his application. A maximum likelihood purist
would reply that there is only one true set of parameters; minimizing equation 73 is simply a less
efficient way of estimating the same set of parameters, which can be estimated more efficiently by
minimizing equation 72. In an ideal world, one might try it both ways, and then try to see if there
really were a measurable difference between the two sets of parameters; however, this judgment
would be affected somewhat by one’s prior expectations about the possibility of such a difference.
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There is a simpler example of this same principle, which has long been familiar to statisticians.
Suppose that we are trying to estimate the median of arandom distribution. To be perfectly consistent,
we can simply use the median of our sample data. However, if we have good reason to believe that
our data comes from a Gaussian distribution, we can use the sample mean; this is a more efficient
estimator, and we know that the median is the same as the mean anyway, if we are sure of the
distribution. Using the sample median is essentially the robust or utilitarian way to go. There are other
possible estimators, of course.

In our application, the utilitarian approach seems very straightforward, at first. In Model-Predictive
Control, our payoffs depend on the multiperiod forecasting ability of our model or ANN. The pure
robust method minimizes those errors directly. Therefore, it is consistent with what we need, and we
should use it rather than the maximum likelihood method.

In actuality, there are two important complications here. First of all, our errors in control do not
depend in such a simple way on the sum of prediction errors over all possible prediction intervals;
the literature on control theory [31-33] suggests a more complicated relation, related to our earlier
suggestions for a moving-window approach and for the compromise method. Secondly, our earlier
example of a phase-shift process shows that the pure robust method may in fact be extremely
inefficient in estimating parameters in some situations. Loss functions were developed for the
compromise method in 1977 [36] that failed very badly in empirical tests, derived from a pure
utilitarian approach.

The alternative loss functions shown in section 10.4.6.2 were derived from a modified version of
the utilitarian approach [61]. The idea was to minimize the long-term prediction errors, as predicted
by the model itself, but assuming the worst about the accumulation (i.e., autocorrelation) of error.
There were gross approximations involved, but the method has proven useful.

To begin with, Werbos [61] considered the case of a simple univariate forecasting model with the
compromise method, deriving:

Y() = ¥ + (o) (74)
Yo = (1-w)Pe) +w¥®) = Y0) + we(r) (75)
Pe+1) = 0¥ = 0%(1) + Owe(r) (76)
Ye+1) = 08(5) + Bwe(t) + et + 1). (17

And likewise:
Y(t+n) = 0¥@) + et +n) +6we(t+n—1) + *wle(t +n—-2) +.... (78)

The error terms on the right-hand side of equation 78 represent the errors in multiperiod prediction.
Assuming the worst about the correlation between errors over time, but assuming that 8w is less than
one (as it would be in any stationary process, when we enforce the rule that w can be no larger than
one), the expected value of the square of the sum of these error terms will be:
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o. (79)

1- IGwI)2

where o2 is the variance of the error term, e(#). For a simple univariate model, we would then pick w
s0 as to minimize this measure of error. For a multivariate model or an ANN, where there is no scalar
0 available, we assumed that errors also accumulate across variables in the worst possible way, and
assumed a 0 of 1; this led to the loss functions of section 10.4.6.2. Again, one could easily do better.

Starting in 1981, we have explored yet another fundamental approach, mentioned briefly in [35].
This approach may be called the ow approach. In the ow approach, we go back to the maximum
likelihood idea that there is only one set of parameters that is best, both for short-term forecasting
and for long-term forecasting. Clearly, this will need to be reconciled with the utilitarian approach,
eventually, but so far it seems to follow the empirical evidence a bit better; in predicting conflict in
Latin America [37], Werbos found that the compromise method did better in all prediction intervals
in split-sample tests. In a sense, this is like the usual robust approach, where we accept the model at
face value, and assume that the problem lies in the dirty noise; however, in this case, we allow for
correlated and truly dirty noise, not just non-Gaussian distributions.

The idea is to pick those values of the filtering parameters, w, which lead to the smallest possible
estimation errors in those parameters—W-—which will actually be used in the control application.
Instead of using the maximum likelihood estimates of the estimation errors, we would like to use
more robust estimates, such as the bootstrap estimates of Friedman or the empirical estimates of
Hjalmarsson and Ljung [62]; however, we need to use simple approximations, in the end, to fit with
the neural network rule of limiting ourselves to inexpensive calculations.

Once again, we have begun our analysis in the univariate linear case. In that case, the usual measure
for standard error may be written as:

2
o = of/[% E(e(t))z] (80)

This is similar to equation 79, except that the denominator is somewhat different; thus, our prior
method was somewhat similar to picking w to minimize 0e’. To evaluate the denominator, note that:

(81)

2
D NCO 505 392 et + ):[ e(t)]

Note that the leftmost term on the right-hand side represents the correlation between error and another
quantity; in general, there is little reason to expect a strong correlation, and—in a forecasting
situation—we always try to estimate parameters so that previous variables correlate very little with
error at time ¢. Thus, for a crude, preliminary analysis, we will approximate that term as zero; we will
use the rightmost term of equation 81 as our denominator.

Simple substitutions yield:

) = Y- ' (82)
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P = oY —1) = 61 - w)¥e - 1) + ewy(t - 1). (83)
Mathematical induction on equation 83 yields:
P = ow(¥(e - 1)+ 6(1 — w)¥(t - 2) + 6%(1 — w)*Y(t ~3) + ...). (84)

If we assume the worst about correlations between Y values over time, we arrive at the following
estimate of the RMS average size of equation 84:

oy~ — M (85)
YR 1oe-w "

Going back to equations 81 and 82, we may approximate our denominator as:

9o ¥ (2 6w ; (86)
2(5%) - 2 [raie)

t

which reduces to:

W : (87)
(1-8(1-w)* )|

Substituting this into equation 80, and ignoring the 63 term (which has no effect on our choices of w
and 0), we arrive at a different kind of loss function to minimize:

L= (o (1-6(1- w))z)z- (88)

w

In cases where 0 is near zero, and larger values of w lead to smaller G, , this tells us to pick w was
large as possible; since w= 1 is the largest allowed value (representing the maximum likelihood case),
we pick that value. In fact, this still applies for any value of 0 less than one-half. However, when 0
is near 1, this tells us to minimize o,w, which tends to push very strongly for the pure robust method.

This analysis gives us considerable insight into the proper use of the compromise method.
However, it is not clear what to do about this insight in neural network applications. As a first crude
approach, we might “approximate” 6; as the square root of 1—(0,2/0y2), as suggested in [61]; however,
this is so crude that its value is questionable at present. A very crude, multivariate linear version of
the reasoning above leads to a denominator more like:

TAU - 8 = W) WQW (I - 8(1 - W))* Cow(¥)) o (89)
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where 0 is now a matrix, where Wis a filtering matrix, where @ is a positive metric representing the
cost of different kinds of error, and Cow(Y) is the variance-covariance matrix of Y, assuming all
variables have been reduced to a mean of zero. If 6 is close to being any kind of unitary matrix, then
the optimal value of I — W is not I (as in the pure robust method), but 6", This suggests two approaches
to getting maximum robustness from a complex model (such as an ANN model): (1) actually use a
complete filtering matrix or network; (2) try to transform the representation, so that individual
variables tend to represent eigenvectors of the dynamic matrix 0 or other such stable variables.

Both of these approaches have some hope for them, but are completely new and unexplored in this
context. The network-filtering approach leads to the obvious problem of how to minimize a rather
complex error function. With simultaneous-recurrent circuits looping around a network, it is feasible
to calculate inverses (or, more precisely, to multiply the inverse of a network by a vector), but there
is some major complexity here and issues about numerical stability and consistency. The eigenvector
approach would be very similar in spirit to the encoder/decoder schemes that are widely used in neural
network research; for example, see the Stochastic Encoder/Decoder/Predictor design in Chapter 13.
Likewise, variables that have big J derivatives (in an adaptive critic design) also tend to be relatively
stable variables. In a network with sticky weights (as discussed in section 10.4.6.2), the sticky weights
themselves may be used as estimates of 6. Clearly, it will take some creativity to get all these pieces
together in a logical manner, but the pieces do exist.

Taking this all a step further, the discussion of “chunking” in Chapter 13 does include a discussion
of further issues of relevance to robustness. Likewise, it would seem logical to modify our estimation
of some components of W—such as sticky weights— in order to improve theirinfluence on estimation
errors of other components of W.

There is a rich field here for future research—both empirical and theoretical-—of enormous
importance to practical success in intelligent control.

10.5. A METHOD FOR PRUNING ANNS

Stringent pruning is often vital to ANN performance, for reasons discussed at length in this chapter.
At least two other pruning or sizing methods were discussed in section 10.4. The method described
here was developed in 1990 by Bhat and McAvoy [2]. This method has been applied successfully to
real-world problems involving felt design; however, [2] mainly discusses applications to simulated
systems and to the pH/CSTR example of section 10.3.

In reviewing the background, Bhat and McAvoy stressed the need for obtaining a good training
set as well, using classical notions of experimental design [63] to ensure variance of the inputs. They
reviewed earlier methods, based on deleting entire neurons, which have a number of limitations and,
in any case, do not provide all the power we need by themselves.

The Bhat/McAvoy algorithm uses two evaluation functions for the ANN, one of them (Ly) used
to adapt the weights, and the other (Lyy) used to evaluate the ANN after training. They define:

n (90)
Ly = | Y, (- Y)* |+ A * COMPLEXITY
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where:

M on
COMPLEXITY = ¥ N, 3, Wi
— £
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and N, is the number of active, nonzero weights arriving at each node; and (for the case n = 1):
Lw = 0'3 + 0'%'%. ©2)

where T is the number of observations in the training set, & is the number of weights in the network,
and o7 and o} are the sample variances of the error and target variables, respectively. (The sample
variance of Y is defined as the average observed value of (Y — |Ly)’, Where Jiy is the mean of Y.)

The algorithm itself is similar to an earlier one proposed by Niida et al. [64]:

1. Start with a complex MLP full of weights and adapt the weights so as to minimize Ly with
A=0.

2. Increment A by a small amount, and adapt the weights again to minimize Ly.

3. Delete (strip) all the weights in the dead zone around zero.

4. After removing the stripped weights (i.e., holding them to zero), adapt the network again with

A=0.

Evaluate Lyy for the resulting network (and store Lyy).

6. If the current Lyy is smaller than that obtained before, with a smaller value of A, go back to
step two and try again.

7. If the current Ly is larger, then go back to the previous version of the ANN (for a smaller A),
and use that as the final version. Quit.

“

Niida et al. had proposed a different measure of complexity:

COMPLEXITY = Y[ ] Wy,
~ L

J

but this failed in all of our tests because of high sensitivity to changes in A, difficulties in handling
weights that vary by orders of magnitude, and erratic behavior when small weights are deleted. The
measure of Lyy used here was based on work by Barron for models that are linear in their coefficients
[65]; therefore, there may be some room for improvement in the procedure.
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10.6. HOW TO USE THE CHAIN RULE FOR
ORDERED DERIVATIVES

The chain rule for ordered derivatives (“backpropagation”) is a general-purpose tool for calculating
derivatives efficiently through any nonlinear, sparse system. As a rule of thumb, if it takes N
calculations to run a model, it should take only kN calculations to extract the derivatives of any target
variables (such as error or utility) with respect to all of the inputs and parameters of the model, in a
single sweep backwards through the model. As computers grow more powerful and the problem
addressed grow correspondingly larger, the efficiency of derivative calculations will become even
more important, because the ratio between N calculations and N? calculations will grow larger.

This section will only discuss the problem of calculating derivatives through an ordered system.
Roughly speaking, an ordered system is one where we have a definite, fixed procedure for calculating
the outputs as a function of the inputs; it differs from a “relaxation system,” which requires the solution
of a set of nonlinear simultaneous equations in order to calculate the outputs. Chapter 13 describes
how to calculate derivatives effectively through a relaxation system (a “simultaneous-recurrent
network’’), once you know how to 49-calculate through an ordered system.

The section will proceed as follows. First, it will describe what an ordered derivative is and give
the chain rule. Second, it will give an example of how to apply it. (The procedure here could easily
be automated.) Finally, it will describe the notion of a “dual subroutine,” which is crucial to the use
of this chain rule within larger, more sophisticated control applications. The material here is mainly
taken from [4] and [22].

10.6.1. Ordered Systems and Ordered Derivatives
An ordered system is a system made up of variables or quantities that we can calculate in a definite
order. The two most common examples are static systems and dynamic systems. An example of a
static system might be:
=4%z 93)
23 =3%71+5%* 2. (94)

More generally, a static system might be:

Imtl = frn-rl(Zh sory Zm) (95)
Zmz = [m2(21s oy Tne1)

TARGET = N = fn(Zl, veey Z-1),

where z, through z,, are the parameters and inputs, and where f,.., through fy are differentiable
functions. When we are seeking the derivatives of a particular quantity, zy, we usually describe the
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system so that zy is the last quantity to be calculated; it is convenient to give that quantity a special
name (“TARGET”).

In some ordered systems, we can still calculate the desired output (zy) after changing the order of
calculation; however, this merely gives us a choice of alternative ordering schemes, each of which is
a valid starting point. (For those who are interested in parallel computing, however, it may be
interesting to note that our derivative calculations will preserve the lattice structure—the paralleliza-
tion—of the original model.) The key requirement is that we can calculate any quantity, z; , when we
know the values of preceding quantities.

An example of an ordered dynamical system would be:

o = Wix Hi()+ Wa* Y (£ - 2) (96)
* KO =3+1(-D)+4x Yo * Yt~ 1) 97
E() = E(t- 1)+ (Ya(1) - Ya))’, (98)

where E(f) is a kind of error measure. In actuality, this dynamic system may be treated as a special
case of equation 95, where we define z; as W;, z, as Wy, zz as Y(1), ..., zr2 as Yi(T), zrs3 as Yx(1), Zrsa
as Y5(1), and so on. Using this kind of approach, Werbos has applied backpropagation even to models
with two time dimensions, as required by some economic models of the natural gas industry [4];
however, this section will not give explicit attention to that kind of model.

The chain rule for ordered derivatives may be written (for the system in 95):

O'TARGET _ 9TARGET . ~ O'TARGET _ 99)
= + 2 * y
0z 0z & 9% 0z

where the derivatives with the + superscript represent ordered derivatives, and the derivatives without
superscripts represent simple partial derivatives. To use this chain rule, you need to know only two
facts:

1. That the ordered derivatives of TARGET with respect to an input or parameter do, in fact,
represent the effect of changing that input on changing TARGET; these are the appropriate
derivatives to use in error minimization, utility maximization, and so on.

2. That the “simple partial derivatives” in equation 99 are worked out simply by differentiating
that equation in the model that defines z; (or TARGET) as a function of earlier variables.

The full definition and proof of equation 99 was given in [3] and reprinted in [4]. To use equation 99
in practice, you must start with the case i = N — 1 and work backwards to i = 1.

It is usually best to test these derivatives by perturbing inputs and making sure that the calculated
derivatives are right. When they aren’t, one can narrow down the problem by testing the validity of
intermediate ordered derivatives. One can perturb an intermediate quantity (or equation) z;,, and then
run the rest of the model (from j + 1 to N) in normal fashion; this should change zy in proportion to
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the ordered derivative of zy with respect to z;. If it does not, you then know that there is a downstream
problem, in calculating the ordered derivatives of zy with respect to z;, zj.s ... 2w

In the example of equations 93 and 94, the simple partial derivative of z; with respect to z; (the
direct effect of changing z, ) is 3. The ordered derivative (the fotal effect) is 23, because of the indirect
effect by way of z,.

10.6.2. Implementation Procedure

Section 10.6.1 includes all the information you need, in principle, to apply the chain rule for ordered
derivatives. However, there is a straightforward way of applying that chain rule, given at length in
section IV of [4], which could be used by people who find it difficult to understand section 10.6.1.
This straightforward procedure is useful even for the expert in disentangling complex systems.

In this procedure, we begin by defining an abbreviation:

A 0'TARGET (100)
F z; = o

In most applications, this abbreviation gives us all the information we need, because there is only one
TARGET variable (like error). Also, the abbreviation can be used directly to naming variables in
computer code. In more complex applications, this kind of abbreviation is even more essential.
Intuitively, F_z; may be thought of as “the feedback to variables z;.”

In this notation, equation 99 may be written:

v
+ -1 . (101)
Fz = I TARGET Fg* izz.
0z 0z

JEivl

The summation on the right-hand side appears complex at first; however, since the equation
determining z; will usually refer to only a few other variables z;, the simple partial derivative of z; with
respect to z; is zero in most cases. In most cases, the summation boils down to a sum of only one or
two nonzero terms.

Step one in our procedure is to spell out, in proper order, all of the calculations used to calculate
TARGET. Equations 96 through 98 are an example, if we add just one more equation:

TARGET = E(). (102)

Because dynamic systems are harder to work with than static systems, we will focus on that example
of an ordered system in this section.

After spelling out the forwards system (equations 96, 97, 98, and 102), our job is simply to work
out the backwards equations that will be used to calculate the required derivatives. In working out
these equations, we first write down the equation for F_(Z), where Z is the last variable calculated in
the forwards system; then we work out the equation for the variable before that, and so on. By writing
down the equations in this order, we can be sure that we can actually use them in this order in our
computer program.
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In the forwards system, in our example, the last variable to be calculated was E(?), the variable on
the left-hand side of the last equation before the definition of the TARGET. We want to work out the
equation to calculate F_E(#), for all «. Here we find that we face two different conditions, depending
on whether t=T or t < T. For t =T, E(t) affects TARGET directly but does not affect any other
variables; thus, we have:

ITARGET _

] (103)
oEn

F_ED =

which follows from differentiating equation 102.

For ¢t < T, we look for occurrences of E(f)—lagged or unlagged—across the right-hand sides of
all the equations in the forwards system. (In other words, we are looking for quantities z; such that
dz; /0E(¢) is nonzero.) There is only one such occurrence here, located in equation 98; therefore, the
sum on the right-hand side of 101 has one nonzero entry in this case. Substituting into equation 101,
we get:

FBw = KL\ p ey » 2D (104)

=0+F_Et+1)*x1 = F_E(t+1).
To simplify our computer program, we can combine 103 and 104 to get:
F_E@) = 1. (105)
Now that we have calculated the feedback to E(f), which was calculated in equation 98, we go
back to the previous equation, 97. We try to work out the equation for F_Y;(#). Looking across the

entire system again, we see the Y; appears on the right in only one equation, equation 98. Thus, we
deduce:

_ J0TARGET aE!t! (106)
Fr0="5rn  + 9% 3r0

= 0+1* (2Y3(9) - Y3(®)) = 2Ys(9) - Y5(9))-

Then we go back to calculating the feedback to Yx(f), which appears twice in equation 97. For the
case t < T, we derive:

OTARGET
aY()

aY:;(t +1)
aYs(1)

+ F_Yy() * () (107)

F_ Y0 = aY;(t)

+ F_Ya(t+1)*

= 0+ F_Ys(t+ 1) * (4Y,(t + 1)) + F_Y;(£) * 4Y,(t - 1)).

= 4F _Yy(t+ 1) * Vo(t+ 1)+ 4F_Y,(t) * Yo(t - 1).
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Note that F_Y;(f) was complicated enough that there is no value in substituting in from equation 106;
it is more efficient for the computer to calculate equation 106 as such, and then move on to 107. Also,
equation 15 can be used for the case ¢ = T as well, if we adopt the convention that F_Y{T + 1) =0.

Finally, we can calculate the derivatives that we are really interested in. For the weights, which
appear only in equation 96, but which affect Y, at all times ¢, the chain rule for ordered derivatives
yields:

T . (108)
F_W, = Y F_Yyn)* (1)
=1
T (109)
F_W, = Y F_Yy(t) * Yi(1-2).
=3
Likewise; for the inputs Y,(f), we get:
F_Y](I) = F_Yz(l) * W, + F_Yz(t'f' 2) * W, + F_ Ys ({.4 l) * 3 (110)

Equations 106 through 110, together, form a well-ordered backwards system, which we can easily
program directly into a computer program or even into a spreadsheet (as in [4]). When debugging
complex systems, it often pays to identify select out simple test problems (after testing the big system),
and to implement them in a spreadsheet. The computer program to calculate the derivatives would
look something like:

Initialize F_W;, F_W>, and quantities for > T to zero
DOFOR¢t=Ttot=1by-1:

Invoke equation 106

Invoke equation 107

Invoke equation 110

Set F_ Wyto F_W;+ F_Y>(1) * Y(t)

Set F_Wato F_W2+ F_Y>(t+2) * Yi(D)

End

For very large, nonmodular forwards systems (a hundred equations or more), it is sometimes
inconvenient to have to search through the entire forwards system all over again for each variable. In
that case, it may be convenient to write “F_varN =" at the front of a blank line, “F_varN — 1 =” under
that (using variable names instead of numbers), until you have a list, going over several pages, in
reverse order. Then you can work your way through each occurrence of each variable as you come
to it, adding the appropriate term to the right feedback equation. This kind of inverse search would
also allow more efficient automation of this procedure. If you have any doubts about the details, you
can use the example above as a test.



344 HANDBOOK OF INTELLIGENT CONTROL

10.6.3. How to Construct Dual or Adjoint Subroutines or Functions

Complex systems for neurocontrol or system identification can be very difficult to keep track of if
one attempts to write out every equation in the entire system as one big mass of equations. The
resulting computer implementation would be even harder to maintain, understand, improve, and
debug. On the other hand, the use of modular design—both in research and in implementation—can
make these systems quite simple.

A vital part of these designs is the ability to backpropagate through different modules. For example,
we may have a module that calculates:

Il = fml(Zl. vees Zm) (111)
N1 = fN—l(Zl, ves ZN-2)

but does not take the final step of calculating TARGET, zy. We assume that the final TARGET will
be calculated somewhere else. The module here will simply output z..; through zx.,. In order to
backpropagate through this module, we must assume that some other module will provide the
quantities:
112
Fo_y & OTARGET | | 1<isn-1. (112)
0z
(In actuality, these derivatives may themselves be calculated by backpropagating through some other
module.) We must program a dual module that inputs FO_z; and implements:

M1
) (113)
F_z = FO_Z.""ZF_Z,’ * —‘Laz-
' - 9%
Jei+l

To work out what these equations are for any particular ordered system, we can use exactly the same
procedures we used in section 10.6.2. Once again, this entire procedure could easily be automated.
This would permit control theorists (and modelers of all kinds) to take advantage of backpropagation
and the designs of neurocontrol without being restricted to the case of ANNs,

10.7. GRADIENT AND HESSIAN CALCULATIONS
FOR SECTION 10.3

The rapid, parallel implementation of the methods of section 10.3 would depend on a rapid calculation
of the gradient and (if possible) the Hessian of H, as defined in equation 20, holding the Lagrange
multipliers constant. These calculations can be derived by using the chain rule for ordered derivatives.
To do this (following section 10.6), we must first specify the forwards system used to calculate the
target, H. For simplicity, we will use k as the “time” index (representing ¢ + k), use @ instead of F3,
and use p instead of pH. We will use the notation s'(x) for the derivatives of the sigmoid function.
(Actually, 5’(x) = s(x)(1 - s(x)).)
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The forwards system can be written as the following, for k = 0 to 30:
vi(k) = Wa+ Wip(k — 1) + Wpp(k — 2) + Wpp(k - 3) (114)

+ Wuo(k) + Wiso(k — 1) + Wisp(k — 2) + Wpo(k — 3)

x5 (k) = s(v;(k)) (115)
h (116)
Vitk) = Wio+ Y, Wix (k)
=l
pk) = bias + s(vi(k)) Ce (117)
Uk) = Uk = 1)+ (p(k) = p')’ + A(p(K) = ric)
+ M2 (Pmax = PK)) + AO(Q(K) — @rmin) + AL Prax — P(K))
where U(-1) = 0 and the target (H) is U(30).
A direct application of the chain rule for ordered derivatives (section 10.6) yields:
F_p(ky = 2p(k)—p") + A’ = A2 (118)
h
+ 2 (F_vj(k+1) * Wy + F_vj(k+2) * Wp + F_vj(k +3) * Wy)
=1
F_vi(k) = F_p(k) * s'(vi(k)) (119)
F_xj(k) = F_vi(k)* W}, , (120)
F_vi(k) = F_x;(k) * s’(vi(k)) (121)
" (122)
F_o(k) = Y (F_vj(k) * Wa+ F_vj(k+ 1) * W

sl

+ F_vj(k +2) * Wi+ F_vj(k+3) * W)

where we again adopt the convention that F_anything (k) equals zero for k > 30. Equation 122 yields
the desired gradient (i.e., it yields F_¢(k) for k from 0 to 30). As in section 10.6, the backwards
equations must be invoked backwards in time (i.e., from k = 30 back to k = 0). To explicitly implement
the additional requirement (dynamic equation) that ¢k + 7) = ¢(7), we could simply modify equation
122 to:
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F_k) = c(k) * F_gtk + 1)+ 3 (F_yj(k) * Wy - 123
+ F_vj(k+ 1) * Wis+ F_vj(k+2) * W + F_vj(k+ 3) * Wp),

where we define c(k) as 1 for k > 6 and O for k < 7. Again, it is easy to generalize this procedure for
more complex models.

To calculate the Hessian is substantially trickier. We cannot calculate the entire Hessian in one
pass; however, we can calculate the second derivatives with respect to ¢(1) and ¢(k), for a particular
t and all k, in one pass. By repeating this process for all 1, we can get the Hessian at minimum cost.

To generate these equations, we must treat the entire system, from equation 114 to equation 122,
as an ordered system for calculating the target F_¢(1). We must “forget” that quantities beginning
with “F_" have anything to do with derivatives. To avoid confusion, we must use “G_" to represent
ordered derivatives of F_¢(1) with respect to other quantities in that ordered system. We must keep
in mind that the order of calculation is from k = 0 to k = 30 for the forwards block and k=Tto k=1
for the backwards block. Working back through that system, we arrive at the following equations
(which have not been implemented or tested as yet):

G_F_o(k) = 1 (for k=1) or O (otherwise) (124)
G_F_vj(k) = G_F_q(k) * Wu+ G_F_¢(k— 1) * W (125)
+G_F_g(k —2)* W+ G_F_o(k—3) * Wy

G_F_x;j(k) = G_F_vj(k) * 5'(v; (k) - (126)
G_F_vi(k) = Y G_F_x(k)* W, I (127)
G_F_p(k) = G_F_vi(k) * s (vi(k)) AR (128)
G_F_Uk) =0

b (129)

G_ptk) = 2% G_F_pk)+ Y (Gvj(k +1)* W,

+G_vj(k+2)* ';,a +G_vj(k+3) * Wp)
G_vi(k) = G_F_vi(k) * F_p(k) * s”(Vi(Kk)) + G_p(k) * 5’ (vi(k)) (130)
G_x;(k) = G_vi(k) * W}; (131)

G_vj(k) = G_F_vj(k) * F_x;(k) * s"(v;(k)) + G_x; (k) * s"(v;(k)) (132)
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’ (133)
G_gky = Y (G_vj(ky * W+ G_vjk+1) * Wy
Fl

+ G_vj(k +2) * Wi + G_vj(k+3) * Wp).

Of course, equation 133 yields the relevant second derivatives. Once again, multiple passes—for
different 1—are needed in this case, because we are looking for an entire matrix of second derivatives.
In coding these equations, one first loops forward from k=1 to k=T in invoking equations 124
through 128 as a block; then one invokes through 129 through 133 for k = T back to k = 0. At least
for large models, these calculations for the Hessian are an order of N less expensive than those
originally proposed by Saint-Donat et al. [1].

In other applications, where we only need one vector based on second derivatives, we can usually
getby with a single pass through the system, if we define the appropriate scalar TARGET as a function
of first derivatives. An example is given in [21].

10.8. IMPLEMENTATION OF MODELS AND
METHODS IN SECTION 10.4

Section 10.4 has already given the concepts behind these methods and their implementation; however,
it left out the details of the derivative calculations, which will be given here. (For the real-time version
of this, see section 10.4.6.3.)

When debugging these programs, the user is urged to print out (or store) the following three items,
at a minimum, in each iteration: (1) the change in error from iteration k to iteration k + 1; (2) the
prediction of that change, based on the dot product of the weight change with the gradient calculated
in iteration k; (3) the prediction of the same quantity, based on the gradient calculated in iteration
k + 1. Normally, items 1 and 2 are negative, and 1 lies between 2 and 3. If 1 is not between 2 and 3
(except for a few atypical cases like the first iteration), suspect a bad gradient; test the gradient as
described in section 10.6. If 1 is positive, your learning rate is too high; you need to rescale your
variables or improve your learning-rate algorithm. If 1 is always negative, but you are making little
progress, you need a faster learning rate or you need to consider some of the tricks cited in this book
to speed things up.

10.8.1. The Compromise and Pure Robust Methods for
Feedforward ANNs or NARX Models

For the sake of brevity and generality, we will use the “modular” approach of section 10.6.3. We will
assume a model of order 3, just to make the equations more readable; the generalization to arbitrary
order is trivial.

Our first job is to spell out the calculations used to obtain the loss function for a given set of
parameters; from equations 63 through 65, we may write:

9(!) = fl¥(t—1), ¥(t-2), ¥(t - 3), u(t), W) (134)
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Y = A-wb+w¥@) i=1,n (135)

E = Y L), (), w). (136)

To implement the pure robust method, simply set w; = 0, use the same derivative equations as given
below, but skip the equations used only to adapt w;. In equation 134, the parameters or weights of the
model—W—are described as a vector, just for convenience; there is no assumption that the number
of parameters is in any way related to the number of variables in the model. The vector u(¢) represents
all exogenous variables used to predict ¥(¢), without regard to their actual source in space and time.
The loss function L could be any of the various loss functions described in section 10.4.

Using the procedures of section 10.6, we may immediately deduce:

F ¥ = 59% L&), Y1), W) (137)
F_Y(t) = FILAY(), Y(t=1), Yt —2),u(t+ 1), W,F_$@+1) (138)
+ F2_fY(t+ 1), ¥(0),Y(t - 1), u(t + 2), W, F_Y(t + 2))
+ F3_fY(t+2), ¥t + 1).¥0), u(t + 3), W, F_P(1 +3))
F_W = Y FW_fY(@), Yt - 1), ¥(t - 2), u(r), W, F_¥uy) (139)
F_w; = 3, F_Y(0) * (¥{1) - ¥1)). (140)

The required derivatives are calculated by equations 139 and 140. In equations 138 and 139, we
assume that you have coded up the dual subroutine, F_f, for the function f. We have used the
abbreviation “F1_" (instead of Fy,.,,_f) for the subroutine which calculates derivatives with respect
to the first vector argument of f, and likewise for F2 and F3, just to avoid possible confusion about
time lags.

In practice, it is easier to calculate the sums in equations 138 and 139 as running sums (as with the
weight derivatives), in computer programming. This yields code that begins by initializing many
things to zero, followed by the main loop:

DOFORt=Ttot=1by-1:
Invoke equation 137;
FORk=1tok=3:F_Y(t-k)=F Y(t-k)+ Fk_f(...,F_?(t));
F_W = F_W + FW_f(.., F_{() X
FORi=1toi=m:F_w;=F w;+F_Y{t+ k) * (Yt + k) - 9,-(t + k)); ‘@5 3
End 5

3

Bl
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The next to last instruction uses “¢ + k™ instead of ‘¢, to make sure that F_Y; has been completely
added up; therefore, after the core loop, one needs a quick loop for k =1 to k = 3 to add in the final
components of F_w;. The cost of running code like this will be far less if you actually use a single
subroutine, with multiple outputs, to provide all the derivatives based on F_?(t).

There is one more detail of relevance to computer programmers. The dual subroutine usually
requires knowledge of the intermediate variables of the original model f. This can be handled either
by storing all the intermediate information on the initial forwards pass, or by recalculating them from
the inputs of the model (which need to be stored in any case). The tradeoff here is very application-
dependent.

10.8.2. Classical Adaptation of Time-lagged
Recurrent Networks (TLRNs)

For a classical TLRN with classical maximum likelihood training, the calculation of error is based
on equations 53, 54, 55, 56, and 22, in that order. If we apply the chain rule for ordered derivatives
(section 10.6) to that ordered system, we immediately arrive at the following equations to calculate
the derivatives we need:

F %0 = Yo-ro 1<i<n (141)

Nn
F_x(9) = F_Ynt)+ Y, FvOW;

. Fitl (142)
+ Y F_vft+ Wy’ m<i<N+n
Fmél
F_v(t) = F_x{(t) * s(vi(t) m<i<N+n (143)
F_W; =) F_vi(t) * x(1) (144)
FW =Y Fv(®)*xft—1) (145)

where we adopt the conventions that F_?, is zero for k < 1 and that F_anything(t) is zero for t > T.
The generalization for longer time lags is trivial [22].

For a sticky TLRN with classical training, the calculation of error is based on equations 53, 57,
55, 56, and 22, in that order. The derivative equations are:

F_¥0 = Yo -r (146)
Nen 147
F_x(®) = F_Y.0+ Y Fy®m*W; (4n

JEi+l
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N (148)
F_v() = F_x() * Sd) + 3 F_vft+1)* Wy

Jemel
F_W; = Y, F_v(t) * x(1) (149)
F_Wy =Y Fy@®*v{t-1) (150)

The case of a mixed system, with a combination of classical, sticky, and extreme sticky neurons can
again be handled by a straightforward use of the procedures in section 10.6.

arp |
10.9. THE COMPROMISE METHOD FOR RECURRENT yA0 |
MODELS (ANN OR OTHER) R B

*

As in section 10.8.1, we will use a modular approach here.

The notation here is somewhat tricky, since we need to consider a forwards model which outputs
two vectors—a prediction, 9(1), and a filtered state vector, R(¢). In section 10.8.2, we assumed that
the vector R(f) was made up of x,.,,(f) through xy,.(t) or v,..(t) through vy..(f), though in most
applications we restrict the recurrence to a subset of the neurons. For simplicity here, I will assume
a model that is only second-order in the predicted variables and first-order in the recurrent variables.
We may write the forwards system used to evaluate error as:

P = AYE-1), Ye-2), Rt - 1), u(t), W) (151)
R(@) = fu(¥(t - 1), Yt - 2), R(t - 1), u(z), W) (152)

Yi0) = (- waP) + wi¥o) (153)

E = Y L@, Y1), W). (154)

If we apply the chain rule for ordered derivatives, as we did in section 10.8.1, we end up with equation
137 followed by:

F_Y(®) = FI_AY(®), ¥t - 1), RO), u(t+ 1), W, F_$(t+ 1), F_R@+ 1)) (155)
+ F2_AY(+1), ¥, Rt + 1), u(t +2), W, F_$(t +2), F_R(t+2))

F_R(t) = F3_AY(), Y(t— 1), R(), u(t+ 1), W, F_9(1+ 1), F_R(t+1)) (156)

F.W =Y FWAY(-1), ¥t -2), R(t— 1), u(t), W, F_¥), F_R()) asn
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followed by equation 140. The key thing about these equations is that there was really only one
forwards model f with two outputs; if we have F_ derivatives available for both of these outputs, we
can use a single dual subroutine to calculate the derivatives with respect to all four of the relevant
vector arguments of f.

Clearly, the main difficulty in implementing equations 155 through 10.8.24 is the need to program
the dual subroutine, based on the methods of section 10.6. Perhaps an example might help. Suppose
that the recurrent system under discussion is a classical TLRN. In that case, the “model” may take
the form:

x() = V-1 1<i<n (158)
X)) = V(£ =2) 1<i<n (159)
Xumn(t) = Rit—=1) 1<i<r - (160)
Xl D) = uf) 1<i<m-2n-r o (161)
v(t) = i Wix(1) m<i<N+n R (162)
() = s(vdo) m<i<N+n (163)
P = o) 1<i<N+n (164)
R(f) = xy-mill) 1<i<r. (165)

Equations 158 through 165 can be coded into one subroutine that produces two outputs—Y(¢) and
R(?). Applying the methods of section 10.6, we arrive at the equations for the dual subroutine:

Fox(t) = Y F_vf) * Wi+ F_¥ () + F_Renu0) (166)
pi

F_v(t) = F_x(1) * 5'(v(0) (167)

F_Wy(5) = F_v{(8) * x(1) (168)

F_R(t—1) = F_xua(1) (169)

F_Y(t-2) = F_xu(t) (F2)) (170)

F_Y(t—-1) = F_x() (F1)). (171)
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Equations 166 through 171 can be coded into a single dual subroutine that yields all four F_ arrays
needed in equations 155 through 157. In equation 166, as in earlier examples, we treat F_?,- and F_R;
as zero for subscripts that are out of bounds.

Once again, equations 151 through 154 can be used with any model f, so long as you know how
to program the dual subroutine for f. For example, f could be a simultaneous-recurrent neural network
or some other recurrent structure (such as a fuzzy inference structure or a finite element code or a
simultaneous model from econometrics); to program a dual subroutine for such an f, see Chapter 13.
The insertion of such an finto this system allows one to build a single modeling system that combines
together the advantages of simultaneous recurrence, time-lagged recurrence, and robust estimation;
once again, we believe that the higher centers of the brain rely on a similar combination (along with
real-time learning) [66,67].
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