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FOREWORD 1

This book is an outgrowth of discussions that got started in at least three workshops sponsored by the
National Science Foundation (NSF):

.A workshop on neurocontrol and aerospace applications held in October 1990, under joint
sponsorship from McDonnell Douglas and the NSF programs in Dynamic Systems and Control
and Neuroengineering

.A workshop on intelligent control held in October 1990, under joint sponsorship from NSF and
the Electric Power Research Institute, to scope out plans for a major new joint initiative in
intelligent control involving a number of NSF programs

.A workshop on neural networks in chemical processing, held at NSF in January-February 1991,
sponsored by the NSF program in Chemical Reaction Processes

The goal of this book is to provide an authoritative source for two kinds of information:
(1) fundamental new designs, at the cutting edge of true intelligent control, as well as opportunities
for future research to improve on these designs; (2) important real-world applications, including test
problems that constitute a challenge to the entire control community. Included in this book are a
series of realistic test problems, worked out through lengthy discussions between NASA, NetJroDyne,
NSF, McDonnell Douglas, and Honeywell, which are more than just benchmarks for evaluating
intelligent control designs. Anyone who contributes to solving these problems may well be playing
a crucial role in making possible the future development of hypersonic vehicles and subsequently the
economic human settlement of outer space. This book also emphasizes chemical process applications
(capable of improving the environment as well as increasing profits), the manufacturing of high-qual-
ity composite parts, and robotics.

The term "intelligent control" has been used in a variety of ways, some very thoughtful, and some
based on crude attempts to market aging software. To us, "intelligent control" should involve both
intelligence and control theory. It should be based on a serious attempt to understand and replicate
the phenomena that we have always called "intelligence"-i.e., the generalized, flexible, and adaptive
kind of capability that we see in the human brain. Furthermore, it should be firmly rooted in control
theory to the fullest extent possible; admittedly, our development of new designs must often be highly
intuitive in the early stages, but, once these designs are specified, we should at least do our best to
understand them and evaluate them in terms of the deepest possible mathematical theory. This book
tries to maintain that approach.

1 The views expressed here are those of the authors and do not represent official NSF views. The figures have
been used before in public talks by the first author.
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Figure F.l Neurocontrol as a subset.

Traditionally, intelligent control has embraced classical control theory, neural networks, fuzzy
logic, classical AI, and a wide variety of search techniques (such as genetic algorithms and others).
This book draws on all five areas, but more emphasis has been placed on the first three.

Figure F.l illustrates our view of the relation between control theory and neural networks.
Neurocontrol, in our view, is a subset both of neural network research and of control theory. None
of the basic design principles used in neurocontrol is totally unique to neural network design; they
can all be understood-and improved-more effectively by viewing them as a subset and extension
of well-known underlying principles from control theory. By the same token, the new designs
developed in the neurocontrol context can be applied just as well to classical nonlinear control. The
bulk of the papers on neurocontrol in this book discuss neurocontrol in the context of control theory;
also, they try to provide designs and theory of importance to those control theorists who have no
interest in neural networks as such. The discussion of biology may be limited here, but we believe
that these kinds of designs-designs that draw on the power of control theory-are likely to be more
powerful than some of the simpJer, more naive connectionist models of the past; therefore, we suspect
that they will prove to be more relevant to actual biological systems, which are also very powerful
controllers. These biological links have been discussed extensively in other sources, which are cited
in this book.

Those chapters that focus on adaptive control and neurocontrol implicitly assume the following
definition: Intelligent control is the use of general-purpose control systems, which learn over time
how to achieve goals (or optimize) in complex, noisy, nonlinear environments whose dynamics must
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Figure F.2 Aspects of intelligent control,

ultimately be learned in real time. This kind of control cannot be achieved by simple, incremental
improvements over existing approaches. It is hoped that this book provides a blueprint that will make

it possible to achieve such capabilities.
Figure F.2 illustrates more generally our view of the relations between control theory, neurocontrol,

fuzzy logic, and AI. Just as neurocontrol is an innovative subset of control theory, so too is fuzzy
logic an innovative subset of AI. (Some other parts of AI belong in the upper middle part of Figure
F.2 as well, but they have not yet achieved the same degree of prominence in engineering applica-
tions.) Fuzzy logic helps solve the problem of human-machine communications (in querying experts)
and formal symbolic reasoning (to a far less extent in current engineering applications).

In the past, when control engineers mainly emphasized the linear case and when AI was primarily
Boolean, so-called intelligent control was mainly a matter of cutting and pasting: AI systems and
control theory systems communicated with each other, in relatively ad hoc and distant ways, but the
fit was not very good. Now, however, fuzzy logic and neurocontrol both build nonlinear systems,
based on continuous variables bounded at 0 and 1 (or il). From the controller equations alone, it
becomes more and more difficult to tell which system is a neural system and which is a fuzzy system;
the distinction begins to become meaningless in terms of the mathematics. This moves us towards a
new era, where control theory and AI will become far more compatible with each other. This allows

L 1 arrangements like what is shown in Figure F.3, where neurocontrol and fuzzy logic can be used as
two complementary sets of tools for use on one common controller.

,II t./1: !:ari-
.':8!!'P:
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Figure F.3 A way to combine fuzzy and neural tools.
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Figure F .4 A way to combine fuzzy and neural tools.
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In practice, there are many ways to combine fuzzy logic and other forms of AI with neurocontrol
and other forms of control theory. For example, see Figure F .4.

This book will try to provide the basic tools and examples to make possible a wide variety of
combinations and applications, and to stimulate more productive future research.

Paul J. Werbos
NSF Program Director for Neuroengineering and
Co-director for Emerging Technologies Initiation

Elben Marsh
NSF Deputy A.D. for Engineering and
Former Program Director for Dynamic Systems and Control

Kishan Baheti
NSF Program Director for Engineering Systems and
Lead Program Director for the Intelligent Control Initiative

Maria Burka
NSF Program Director for Chemical Reaction Processes

Howard Moraff
NSF Program Director for Robotics and Machine Intelligence
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APPROXIMATE DYNAMIC
PROGRAMMING FOR

REAL. TIME CO NTR 0 LAND
NEURAL MODELING

Paul J. Werbos
NSF Program Director for Neuroengineering

Co-directorfor Emerging Technologies Initiation 1

13.1. INTRODUCTION.
The title of this chapter may seem a bit provocative, but it describes rather precisely what my goals
are here: to describe how certain control designs, based on an approximation of dynamic program-
ming, could someday reproduce the key capabilities of biological brains-the ability to learn in real
time, the ability to cope with noise, the ability to control many actuators in parallel, and the ability
to "plan" over time in a complex way. These are ambitious goals, but the brain itself is an existent
proof that they are possible. The new material in this chapter has been discussed with prominent
neurophysiologists in the past few months, and remarkable parallels with the human brain have been
identified [1,2]; however, this chapter will mention only a few highlights of the more recent
discussions as they bear upon the engineering.

Chapter 3 has already shown that the neurocontrol community has developed two general families
of designs capable of planning or optimization to some degree, over time-the backpropagation of
utility and adaptive critics. Of the two, only adaptive critics show real promise of achieving the
combination of capabilities mentioned in the previous paragraph. This chapter will begin to fill in
several crucial gaps between the long-term promise mentioned above and the existing methods
described in Chapters 3 and 10:

1 The views expressed here are those of the author, not those of NSF.
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1. Section 2 will provide detailed infonnation on alternative methods to adapt a Critic network
(i.e., to approximate a solution of the Bellman equation of dynamic programming).

2. Section 3 will provide preliminary infonnation on the strengths and weaknesses of the
alternative methods, based on linear examples (which could also be used in debugging and in
establishing links with other methods).

3. Section 4 will discuss how neurocontrol systems can fulfill functions like hierarchical plan-
ning, chunking, etc., which are major concerns of the artificial intelligence (AI) community.

4. Section 5 will describe an Error Critic design that adapts time-lagged recurrent networks in
real time, without the cost-scaling problems of the usual forward perturbation methods.

5. The methods of Chapter 10 adapt neural networks to yield good predictions of a plant or
environment. To make full use of stochastic methods, one needs to adapt networks that
represent correct probability distributions. Section 6 will present a Stochastic Encoder/De-
coder/Predictor architecture that can do so.

The issue of exploration is also important to these designs, but other chapters of this book will have
more to say about it.

Like Chapter 3, this chapter will try to present the basic algorithms in such a way that any
reasonable functional fonn can be used-linear or nonlinear, neural or nonneural. Therefore, it will
have to assume a full understanding of Chapter 3 and of Appendix B of Chapter 10. For example, it j
will frequently use dual subroutines or dual functions.IfY = f(arguments) is a differentiable function,
and x is one of the arguments off, then we may define the dual function off with respect to x as:

A ~ ~ (I)
F JX<arguments, F -y) = the vector k F _Yi * av. (arguments) .~

i "~

This notation for differentiation takes getting used to. However, iff represents a sparsely connected
nonlinear system (like a neural net), then we can calculate all these dual functions in a single sweep,
at a much lower cost than the brute force matrix multiplication suggested by equation I; thus, dual
functions are crucial to the computational efficiency of our algorithms.

Likewise, this chapter will assume some understanding of supervised learning. A real-time
supervised learning system may be defined as a set of admissible vector-valued functions,/(W, other
arguments), and a procedure for updating W when presented with a set of values for the other
arguments and a desired value (or "target") for f. For the sake of generality, this chapter will not
restrict itself to anyone choice of supervised learning system, but it will usually require functions!
that are continuous everywhere and differentiable almost everywhere.

There will be no simulation studies reported in this chapter. Simulation studies are an important
tool in the nonlinear case, but a thorough mathematical understanding of the linear case (or even the
finite-state case) is often the best place to start with a new algorithm. Narendra's stability proof for j

the nonlinear case in this book is far more satisfying than the simple linear checks used here; however,
Narendra's work was possible only because of decades of painstaking work nailing down the
properties of the linear versions of his methods, followed by many nonlinear simulations guided by
the resulting intuition. For the control problems and algorithms addressed in this chapter, we are still
at an earlier point in that cycle.
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13.2. METHODS FOR ADAPTING CRITIC NETWORKS

2.1. Introduction and Notation

Chapter 3 mentioned a number of ways to adapt Critic networks. This section will provide details of
implementation for four of those methoos-heuristic dynamic programming (HDP) and dual heuristic
programming (DHP), both in their original forms and in their action-dependent variations (ADHDP
and ADDHP). It will not discuss certain other important methoos, such as GDHP [3,4] or methoos
based on instrtlmental conditioning theories [5], because they are two steps beyond the present state
of the art in published real-world applications; however, it will briefly discuss the methoo of temporal
differences (TD) of Barto, Sutton, and Anderson [6].

I will assume that the controller and the environment interact as follows, at each time t:

1. An estimate of the state vector, R(t), becomes available.
2. The controller performs its various calculations and invokes the Action network A to calculate

the actions y(t) = A (R(t». Total utility, U(R(t),u(t» is also calculated. .
3. The action u(t) is transmitted to the environment.

(Some authors would prefer to assume that U is observed, rather than calculated, but the
assumption here is more general and more realistic [1,3].) Portions of this section will assume the
availability of a Mooel network:

A(t + 1) = f(R(t), u(t», (2)

but I will not discuss the adaptation of the Mooel network or its use in estimating the state vector R,
because this is discussed elsewhere (see Chapter 10). For the same reason, I will not discuss the
adaptation of the Action network here (see Chapter 3). Likewise, there is no reason here to specifically
refer to the weights or parameters of ~.hose networks.

In all four methoos, the Critic network can be adapted using any supervised learning methoo. Thus,
the Critic network could be an MLP, a CMAC. or a Grossberg network. Our four algorithms are not
alternatives to basic backpropagation or associative memory methoos in adapting the weights of such
networks. Rather, they are procedures for how to set up the inputs and targets of a network. Like
direct inverse control (see Chapter 3), they are generalized procedures that can be used with any
specific supervised learning methoo. All four algorithms are fully time-forwards. real-time methoos
as presented here.

2.2. Mathematical Background

This subsection is not necessary to implementing the algorithms but may be helpful in understanding
them.

HOP is based on an attempt to approximate Howard's form of the Bellman equation, given as
equation 29 of Chapter 3. For simplicity, I will assume problems such that we can assume Uo = O. (If
not, see [3].) ADHOP is based on equation 31 of Chapter 3.
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DHP is based on differentiating the Bellman equation. Before performing the differentiation, we
have to decide how to handle u(t). One way is simply to define the function u(R(t» as that function
of R which, for every R, maximizes the right-hand side of the Bellman equation. With that definition
(for the case r = 0), the Bellman equation becomes:

J(R(t» = U(R(t), u(R(t» + < J(R(t + 1» > -Uo. (3)

where we must also consider how R(t + 1) depends on R(t) and u(R(t». Differentiating, and applying
the chain rule, we get:

~ aJ(R(t» --L aJ(R(t+ 1» (4)
A,(R(t» -aRi(t) -aR,(t) U(R(t), u(R(t» + < aR,(t) >

= aU(R(t), u(t» + L aU(R, u) 0 auj(R(t»
aRi(t) .aUj aRi(t)j

~ aJ(R(t+ 1» aRJ.t+ 1)+"",< 0 >
.aRj(t + 1) aRi(t)
j

+L< aJ(R(t+ 1» 0 arj(t+ 1) 0 ~>
jok aRj(t + 1) aUk(t) aRj(t)'

Strictly speaking, this calculation would have peen more rigorous if we had used the chain rule for
ordered derivatives given in Chapter 10; however, the content of this equation should be clear
intuitively. Backpropagation "through" the Model network and the Action network, based on their
dual subroutines, is simply an efficient way to carry out these chain-rule calculations without having
to store and multiply large matrices.

In a similar vein, equation 31 of Chapter 3 translates into:

J'(R(t), u(t» = U(R(t), u(t» + < J'(R(t + 1), u(R(t + 1» > -Uo (5).
which, when differentiated, yields:

(R) A a a (6)
Ai (R(t), u(t» = aR;(t) J'(R(t), u(t» = aR;(t) U(R(t), u(t» j

L ( aJ' L oJ' aUk(t+l» ) aRj(t+l) j
+ j aRtt+1)+ k auJt+ 1) 0 aRt~ 0 aRi(t)

and a similar equation for A(.). Note that our definition OfA(R) in equation 6 requires us to differentiate
the left-hand side of equation 5 as if u(t) were a constant vector; consistency requires us to do likewise
with the right-hand side in order to calculate A(R). (If we had treated u(t) as a function of R when
differentiating J', then A(R) would have been just the same as the A ofDHP!)
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In theory, even with OHP, we might have adapted a A(o) network, whose targets would simply be
the derivatives of J(t + 1) propagated back to u(t); however, since those derivatives are available
directly to the Action network (as per Figure 2.7 of Chapter 3), there is no real need for such a network.
Still, the calculations involved in running one network (the A(o) network) might take less time than all
the steps shown in that figure; therefore, it is conceivable that such a network might have some use
in lower-level Action networks that need to react very quickly.

2.3. Implementation of HDP, TD Methods, and Comments

HOP is a procedure for adapting a network or function, J(R(t), W), which attempts to approximate the
function J(R(t». Figure 13. I illustrates the basic idea. The steps in HOP are as follows, starting from
any actual or simulated value for R(t):

1. Obtain and store R(t).
2. Calculate u(t) = A (R(t».
3. Obtain R(t + I), either by waiting until t + I or by predicting R(t + 1) = f(R(t),u(t».
4. Calculate:

J(t) = U(R(t),u(t»+J(R(t+l),WY(I+r) (7)

5. Update Win J(R(t), W) based on inputs R(t) and target J"(t).

Step 5 is where we use y real-time supervised learning method. There are a variety of ways to
implement this five-step p ocedure, ranging from a purely on-line approach (where R(t) and R(t + 1)
are never simulated or p dicted) to a "dreaming" approach; all are statistically consistent, if we
assume that forecasting e ors are normal and independent. (Section 6 will show how to relax that
assumption.) The issue of ow best to simulate R(t) when dreaming is an outstanding research issue,

A
R (1+ ) J (1+1) U (I)

-CRITIC

t=
U(t)

R (I)

r
fovN) +)

Figure 13.1 HOP as a way. .
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closely related to the issues of exploration and search. Because HOP is based on dynamic program-
ming, one might expect that optimal dreaming would involve something like a backwards sweep,
starting out near goal states, terminal states, or the like.

It may be possible to accelerate HOP by modifying step 5, to account for the changes in the target
itself that result from changing W; however, the obvious way of doing this (adapting J(t) -J(t + 1)
to match U, in effect) failed the consistency test we will discuss in section 3 [8].

HOP was originally developed with the thought of applying it to biological organisms or to
long-term decision problems, where the true horizon of our concern is essentially infinite [7]. For that
reason, I focused on the case where r (the factor we use to discount the future) is zero. The original
temporal difference (TO) method of Barto, Sutton, and Anderson [6] adapted a Critic in a situation
where there was a terminal time T, and the utility payoffs all occurred at time T. They adapted a table
look-up kind of Critic, which was updated to match the target J(t + 1 y( 1 + r) for the case t < T, and
to the target U, for the case t = T. In the special case where U = 0 for t < T and J(T + 1) = 0, it is

obvious that equation 8 yields the targets they used.
A few researchers have argued that ANNs should be asynchronous systems, without clock pulses

and the like, in order to reflect the distributed, asynchronous nature of the brain. The design above
violates that idea. However, many well-known biologists, like Llinas, have studied clock pulses and
synchronization systems in the brain in very great empirical detail. For example, it is well known that
the limbic lobes of the brain (which appear to serve as a Critic network [1,4]) operate at a cycle time
(theta rhythm) about twice the normal cycle time (alpha rhythm) of the cerebral cortex, which appears
to calculate the short-term memory or state vector R(t) [14]. Llinas, in conversation, has stated that
these cycle times are "unbelievably constant" over time in individual animals. If good clocks are
difficult to achieve in organic brains, then their pervasive existence suggests very strongly that they

are critical to brain-like capabilities.

2.4. Implementation of DHP

OHP is a procedure for adapting a Critic network or function, t(R(t), which attempts to approximate
the function ')..(R(t» defined in equation 4. OHP, like HOP, can use any real-time supervised learning
method to adapt the Critic. There is no need to use backpropagation in the supervised learning itself;
therefore, OHP is not affected by the issue of convergence speed in basic backpropagation. Never-
theless, the procedure for calculating the target vector, A. ',does use backpropagation in a generalized
sense; more precisely, it does use dual subroutines to backpropagate derivatives through the Model
network and the Action network, as shown in Figure 13.2.

OHP entails the following steps, starting from any value of R(t):

1. Obtain R(t), u(t) and R(t +1) as was done with HOP.
2. Calculate:

t(t + 1) = t(R(t + 1), W) (8)

F _u(t) = F _Uu(R(t), u(t» + F Ju(R(t), u(t), t(t + 1» (9)

2:-. C1') t(t) = F JR(R(t), u(t), t(t + 1» + F _UR(R(t), u(t» + F _AR(R(t), F J'(t»~J~~
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~ ( A (t+1) ~ ~J(t+1)

-~~(t+1)

..
~ ;

: ,. TARGET = A' (t)
R(t) -

Figure 13.2 Calculating the targets)... in DHP.

.3. Update W in ~R(t), W) based on inputs R(t) and target vector ),,*(t).

In these equations, note that A.(t + 1) is input into the dual subroutine in place ofF _R(t + 1). Notice

how equations 9 and 10 are equivalent to equation 4 above, using our quick definition of a dual

function in equation 1. In some earlier descriptions of DHP [3], I left out the third term by analogy

to the backpropagation of utility; however, the results in section 3 below suggest that this was an

error.

2.5. Implementation of ADHDP ("Q-learning")

ADHDP adapts a Critic network, J'(R(t), u(t), W), which attempts to approximate J' as defined in

equation 31 of Chapter 3. Most implementations of ADHDP so far have followed that equation quite

directly. Instead of using an Action network to generate u(t + 1), they generate all possible action

vectors u(t + 1), calculate the resulting '1'(t + 1), and then pick the u(t + 1) which maximizes

J'(t + 1). These calculations are used to generate the target that the Critic is adapted to. This nonneural

approach has some obvious limitations:

I ;. When the action vector u is complex, it is not practical to simply enumerate all its possible

:. values.

.The procedure requires a good Model network or excellent prior information to tell us what

'1'(t+ 1) will be, for each choice foru(t+ 1). (We certainly cannot try every u(t+ 1) in parallel in the actual plant!)

In addition, it leads to instability in tasks like broom-balancing, for technical reasons discussed by

Watkins. For the sake of exploration, we sometimes take actions u(t + I) that are not optimal [9], but

--.:ese are not used in calculating J'(t+ 1) when adapting the Critic network. -~
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R(I+1)
-J(I+1) U(t)

~ (1+1) CRITIC

Target =
J(I+ 1 )+U(t)

R (I)

~ (I) CRITIC Error

Figure 13.3 ADHDP as a way to adapt an action-dependent Critic.

So far, there have only been two true neural net implementations of ADHDP, implementations in
which both the Critic and the Action network are neural networks [10,11]. The method for adapting
the Critic is shown in Figure 13.3. It is nearly identical to HDP.

Starting from any R(t), the steps are:

1. Obtain R(t), u(t), and R(t + 1) exactly as with HDP.
2. Calculate:

1*(t) = U(R(t), u(t»+ J'(R(t + 1), A (R(t + 1), WY(I +r). (11) i

3. Update Win J'(R(t), u(t), W) based on inputs R(t) and u(t) and target J*(t). j

2.6. Implementation of ADDHP

ADDHP adapts a Critic network with two outputs-A.(R1R(t), u(t), W) and A.(U1R(t), u(t), W)-which
try to approximate the two gradients of J'(R(t), u(t». In other words, the "output vector" of the Critic
network is the concatenation of two vectors. The procedure is very much like DHP, except that the
targets are calculated in a different way, as shown in Figure 13.4.

Starting from any R(t), the steps are:

1. Obtain R(t), u(t), and R(t + 1) exactly as in HDP. I
2. Calculateu(t+ I)=A(R(t+ 1».
3. Calculate:

F _R(t + 1) = ~(R1R(t+ 1), u(t + 1), W) + F _AR(R(t+ 1), ~(U)(R(t + 1), u(t+ 1), W» (12) j
:"
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CRITIC

A u(I+1) U(I+1). AU(I+1)~ -: -

ACTION

..
~ (1+1) ~ :

MODEL UTILITY
., ..

~. ~ ~..
: : ~ U (I)R (I) 'A .(I) A .(I) , -

-R -u

Figure 13.4 Calculating the targets AR* and Au* in ADDHP.

AR(t) = F JR(R(t), u(t), F _R(t + 1» + F _UR(R(t), u(t» (13)

A:(t) = F Ju(R(t), u(t), F _R(t + 1» + F _Uu(R(t), u(t» (14)

4. Update W in the Critic based on inputs R(t) and u(t) and targets ~*(t) and )..,*(t).
Note the comparison between step 3 and equation 6 above.

13.3. PERFO RMAN CE TRAD EO FFS IN LINEAR EXAMPLES

3.1. Summary

This section will perform a preliminary analysis of the strengths and weaknesses of the Critic designs
above, based on exact solutions in the linear case. This analysis was stimulated in part by discussions
with Guy Lukes (of [9)}, David White, Michael Jordan, and Andy Barto regarding their experience
in simulating some of these systems. The primary conclusions are:

.ADHDP, when fully implemented as a network adaptation scheme, has problems with what
Narendra [12] has called "persistence of excitation." Near an optimal solution, it loses its ability

~
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to learn efficiently. In the work of Sofge and White [11], this problem was limited by a
combination of persistent process noise and the use of time derivatives (which magnify noise),
but it still was noticeable.

.ADDHP and DHP have much less of a problem with the persistence of excitation. The Critic
networks in ADDHP and DHP do not have to be MLPs and do not have to be adapted by basic
backpropagation, any more than the Critics in HDP do; however, backpropagation must be used
in setting up the targets that the Critic adapts to. (This is still a real-time design.) In setting up
the targets, it is important to propagate derivatives through the Model network and the Action
network; this is not like backpropagating utility, where the Action-net term is often optional.
This supersedes earlier discussions of DHP, which were incomplete [3].

.The advantages of DHP over HDP can be understood somewhat analytically. They hinge on
the fact that a Model network usually needs fewer inputs per output than a I-style Critic does,
and on the fact that changes in an Action network do not require changes in one's Model i
network. Again, however, hybrid designs might have benefits in handling type 3 unexpected i
events, as discussed in Chapter 3. 1

In many applications, initial experiments with DHP should probably be based on backpropagating 1
through the actual simulation model to be used in testing (using the methods of Chapter 1O, Appendix
B), instead of adapting a neural net Model network; the latter may be essential, eventually, for true
real-time adaptation, but it may help to start out by understanding how the controller operates in the
absence of system identification problems.

Problems also arise (beyond the scope of this chapter) in exploring new regions with HDP. I i Updating J(t) to match '1(t + 1) + U(t) can be problematic, when the overall level of J in a certain

region is totally unknown. Since DHP deals with the gradient of J, instead of the overall level of J,
it should behave differently in this situation.

3.2. A Linear-Quadratic Example
j

To understand these methods further, consider the following simple linear-quadratic control problem.
Before evaluating the methods themselves, we must work out the correct values of various functions
in this problem, so that we have something to check the methods against.

Suppose that the vector of observables, x(t), is the same as the state vector of the plant; in other
words, assume that everything is fully observable. Suppose that we are trying to maximize a measure
of utility, U(t), summed from the present time to the infinite future, and defined by:

U(t) = -X(t)T Qx(t). (15)

Suppose that the plant is governed by:

x(t + 1) = Px(t) + Ru(t) + e(t). (16)

where:

< e(t)e(t)T > = E. (17)
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Suppose that our Action network is:

u(t) = Ax(t). (18)

For any fIXed value of the matrix A, we can calculate theJ function conditional upon thatA (following
Howard's approach [13]). As a preliminary step to doing this, we define:

P' = P+RA, (19)

and observe that:

x(t+ 1) = P'x(t) + e(t). (20)

Let us define M as the matrix that solves the following equation:

M = P'Mp'T -Q. (21)

(This equation can be solved explicitly if we define M as a vector in N2-dimensional space, but the
resulting expression for M is not useful for our purposes here.) I claim that Howard's form of the
Bellman equation (with r = 0 and A now fIXed) is satisfied by:

J(x) = xTMx. (22)

To prove this, we simply substitute this into Howard's equation (3) and verify that it is satisfied. For
the left-hand side of the equation, we get:

J(x(t» = x(t)TMx(t). (23)

For the right-hand side, we get:

U(x) + <J(x(t+ 1»> = _XTQX + < (P'x(t) +e(t)TM(P'x(t) +e(t»>
= _XTQX +X(t)Tp'TMP'x(t) + < e(t)TMe(t) >.

(In this last calculation, I exploit the fact that e was assumed to be random, so that its cross-covariance
with x is zero.) Because M satisfied equation 21, and because the distribution of e is a constant with
respect to x, this tells us that:

U(x) + < J(x(t + 1) > = xT(t)Mx(t) + Uo, (24)

where Uo is a constant (here zero). Comparing equations 22 and 24, we can see that the Bellman
equati(jn is indeed satisfied. Howard has proven [13] that we converge to an optimal strategy of action
if we alternately calculate the J function for the current strategy of action, modify the strategy of
action so as to maximize that J, recalculate J for the new strategy of action, and so on.
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Following equation 31 of Chapter 3, it is easy to see that the true value of 1'(x(t), u(t» conditional
upon the present action strategy A is:

l' = -X(t)T Qx(t) + (Px(t) + Ru(t»TM(Px(t) + Ru(t». (25)

3.3. Persistence of Excitation

The need for persistent excitation is one of the classic problems of adaptive control [12], which can
be dealt with but never fully exorcised.

In extreme form, let us imagine a control problem where we are supposed to force a plant to stay
very close to a desired operating point, Xo. Suppose that the level of noise in the plant is extremely
low. In this case, a good controller will learn very quickly to make sure that there is very little change
or variance in the state of the plant or in the action vector itself over time. However, from a statistical
point of view, it is precisely the variance (or "excitation") of the plant that allows us to understand
how the plant works; as that variance decreases, our understanding may deteriorate, leading to a
deterioration in control, until the variance grows large enough to allow a slow return to adaptive
control. This kind of effect led to many surprising, counterintuitive failures of sensible-looking control
schemes in the 1960s and 1970s.

How does this apply to adaptive critic systems?
From equations 19 through 25, we can see that the weights in any form of Critic network should

change as the strategy of action, A, changes. The network must therefore be capable of "unlearning"
the past. This makes it especially important that there be excitation or variance in more recent time

periods.
In the case of ADHDP, let us consider a simple linear problem in which the optimal action turns

out to be u = -x (i.e., A = -/). In the early stages of adaptation, the A matrix will be incorrect; therefore,
the Critic must learn to "forget" those stages, and pay more attention to information near the optimum,
as it approaches the optimum. Near the optimum, however, it is trying to predict some target using
inputs-u and x-that are totally correlated with each other. It is well known from elementary
statistics [15] that this kind of situation leads to huge inaccuracy in estimating weights; this, in turn,
implies inaccuracy in adapting the Critic. With least-squares estimation techniques, like basic
backpropagation and regression, the estimates of the weights in the Critic will still be consistent
estimators but the random errors in these estimates will grow inversely with the variance of u + x
[15]. Other forms of supervised learning would tend to do even worse here, because they do not
correct so precisely for correlations between input variables. Random exploration could help a little
here, by reducing the correlation between u andx.

With DHP, the situation would be radically different, because we only use one input vector-x-to
predict the vector of targets. Thus, the correlation between u and x is not a problem. Even with
ADDHP, we use a Model network to consider explicitly how changes in u would change the results
at time t + 1; therefore, even if u should be correlated with x, the procedure will still be informed
("excited") about alternative possibilities for u. With DHP and ADDHP, one must still worry about
maintaining the validity of the Model network as the system experiences different regions of control
space; however, the Model network-unlike the Critic network-should not have to change as the
Action network changes. In other words, Howard's procedure [13] tells us to adapt the Critic J by
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throwing out data based on earlier, suboptimal action strategies A, even if the plant is unchanged;
however, for any given plant, data from optimal and suboptimal action strategies can be used without
difficulty in system identification. Therefore, the excitation problems should be far less in the case
of DHP. With DHP, there is no strong mechanism present to increase Model errors over time, near a
stable equilibrium, because there is no strong need to overwrite earlier experience in that situation.

These conclusions are reinforced by considering how DHP and ADDHP would work for the simple
linear problem given above, when the correct model (equation 16) is known.

3.4. DHP in the Linear-quadratic Example

Let us check to make sure that DHP works properly, for a given value of A and a known model, in
the simple linear-quadratic example above. More precisely, let us check to see-if the Critic is initially
correct-that it will stay correct after an adaptation step. (This check still leaves open a lot of other
questions for future research.)

From equation 30, the correct valueofJ(x) isxTMx. The correct value for').(x) is simply the gradient
of this. Thus, we start from:

).(t+l) = 2Mx(t+I).

Our task is to calculate the targets for t(t) as they would be generated by DHP, and then check them
against the correct values. To do this, we must carry out the calculations implied by equations 9 and
10 for this case. To calculate the first term on the right-hand side of equation 10, we propagate ').(t + I)
through the model (equation 16) back tox(t), which yields an expected value of:

<pT(2Mx(t+ I»> = 2pTM(P+RA)x(t).

For the second term, we simply use the gradient of U(x(t»:

-2Qx(t).

For the third term, we propagate ').(t + I) through the model (equation 16) back to u(t), and then
through the Action network, which yields an expected value of:

< AT(RT(2Mx(t + I» > = 2ATRTM(P+RA)x. (26)

Adding all three terms together, we find that the expected value of our target vector will be:

< ). *(t) > = 2(P + RA)TM(P + RA)x(t) -2Qx(t), (27)

which is easily seen to equaI2Mx(t)-the correct value-if we exploit equation 21. The smaller the
learning rate, the more we can be sure of averaging out the effect of noise and tracking the expectation
value; here, as elsewhere in neural nets, there is a tradeoff between speed and accuracy, which is best
resolved by using adaptive learning rates, as in Chapter 3.
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Some earlier accounts of DHP did not mention the third term, the term in equation 26. If this term
were not present, the left-hand "RA" in equation 27 would disappear, and the matrix multiplyingx(t)
would no longer be symmetric, unless RA were zero. Thus, the Critic would be grossly incorrect. RA
is zero only under extreme and uninteresting conditions-conditions where the control actions have
no effect at all on the system to be controlled, or where the best control strategy is always to do
nothing. Therefore, neglect of the third term leads to the wrong result, almost always.

This situation is quite different from what we get in backpropagating utility. With the backpropaga-
tion of utility, one can always derive an optimal schedule of actions, starting from fixed initial
conditions at time t = 1 and going through to a terminal time t = T. This is possible because we assume

the total absence of noise when using that method. The optimal schedule of actions can be found
simply by calculating the derivative of utility with respect to action at each time, without allowing
for any Action network at all. With a powerful enough Action network, one could presumably
reproduce this same optimal schedule of actions as a function of state input variables. Thus, there
should be no need to propagate derivatives through the Action network in that case-unless the Action
network is so constrained that it lacks the ability to reproduce an optimal or near-optimal strategy.
Again, this is quite different from DHP.

Notice as well that the calculations above do not become problematic for A near an optimum. The
persistence of excitation problems we saw with ADHDP do not appear here, so long as P and R are
known.

3.5. ADDHP in the Example

As with DHP, we will assume that the Critic is correct at time t + 1, and verify that the expected
values of the targets are correct.

Differentiating equation 25 with respect to u, at time t + 1, we start with:

<A..(t+l» = <2RTM(Px(t+ 1)+Ru(t+ 1»> (28)

= 2RTM(P + RA) <x(t+ 1) > = 2RTMP' <x(t+ 1) >

and likewise with R:

<A~t+ 1» = -2Q<x(t+ 1) >+ 2pTMP' <x(t+ 1». (29)

Following Figure 13.4, we first propagate A(.) through the Action network, and add the result to A(R) j
"to get: :

<F_R(t+l» = AR(t+l)+AT(A.(t+l» ~

= -2Q<x(t+ 1) >+2(P+RA)TMP'<x(t+ 1) >

= -2Q <x(t+ 1) > + 2p'TMP' <x(t+ 1) >.

By equation 37 this is simply:

<F_R(t+ 1» = 2Mx(t+ 1» = 2M(Px(t) + Ru(t».~
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(Notice that this complete derivative corresponds to the ').(t + 1) of DHP!) To calculate the target for
~(u)(t), we propagate this through the Model network back to u(t), and add in the gradient of utility
with respect to u(t) (which happens to be zero in this example); the result is:

< A:(t) > = 2RTM(Px(t) + Ru(t)), (30)

which corresponds to the correct value that we get from differentiating equation 25. In a similar way,
the targets for A(R) are also correct. As with DHP, propagation of derivatives through the Action
network was crucial to getting the right answer.

3.6. DHP versus HDP

A previous paper [8] described the performance of HDP in an even simpler example, where A was
again fixed. This example may be written as:

x(t+l) = P'x(t)+e(1) (31)
TU(x) = Ux
TJ(x) = w x.

(Note that U was a vector in that study, and that there was no need to assume positive or negative
definiteness.) It showed that we would arrive at the following update for w after a long series of
experiments in which A was fixed:

< w(n) > = p'TW(n-J) + U. (32)

However, as with all expected values, there is noise. To get smaller and smaller errors in w, one needs
exponentially increasing amounts of data [15]. One needs to work through many values of t.
Furthermore, since equation 32 is actually the result of regressing all the Xi variables on a single
dependent variable, the errors will be magnified further if there are correlations between these
variables. With DHP in the same problem, we would use a very simple Critic network:

A(X) = w.

Using calculations like those above, we see that a single time cycle is enough to yield exactly:

A. = p'TW + u. (33)

Once the correct model is known, then, DHP can be immensely faster. Of course, it takes time to
learn the model. Therefore, a realistic tradeoff would compare the errors implied by equation 32
versus those in estimating a model. The standard errors [15] are determined in part by the degree of
collinearity and the number of independent variables; one would expect both factors to be much larger
in equation 32-where J depends on all variables in the system and represents all direct and indirect
connections through time-than in estimating a model from time t to t + 1, because the patterns of
direct causal links will usually tend to be sparse.



508 HANDBOOK OF INTELLIGENT CONTROL

If it is difficult to find a good functional form for the Model network-despite all the theorems
that say that MLPs can approximate any functional form-HOP may still have some advantages in
terms of robustness; this, in turn, suggests that a hybrid approach might be the ultimate way to go.
For now, however, the advantages of equation 33 over equation 32 are very compelling for large
problems, and (as discussed in Chapter 3) there is reason to believe this is a general conclusion.

13.4. ADAPTIVE CRITICS AND ARTIFICIAL INTELLIGENCE

During two of the workshops that stimulated this book, there was considerable discussion of some
very basic issues, including a key question: To what extent can practical, realistic, adaptive critic
designs reproduce those aspects of intelligence that receive the most attention from the AI commu-
nity? Adaptive critics do have a close relation to the "evaluation functions" or "static position
evaluators" of classical AI.

Some of this discussion was of enormous scientific importance; however, the more abstract
analysis of linguistic reasoning [1] and planning [16] has been published elsewhere, and will not be
repeated here in detail. From an engineering applications point of view, this analysis has led to the
following informed conjectures which merit further investigation:

1. The designs of section 2 will indeed have limited capability if the boxes in the figures are all
filled in withfeedforward networks. Such designs are likely to work very well in ordinary but
difficult control problems, like complex problems of controlling a nonlinear aircraft or
managing a chemical plant. However, they are likely to perform poorly in problems like robot
navigation through a crowded workspace, or problems like intercepting multiple missiles in
an optimal fashion. The problem is that even after learning, no feedforward system-not even
a human-can be expected to glance at a novel complex scene and instantly see the path
through the maze; even after learning, humans seem to implement something like a relaxation
algorithm that requires them to keep looking at the scene until a pattern emerges.

The obvious solution here is to use a simultaneous-recurrent network, as described in
Chapter 3, as the Critic network. Minsky showed long ago [17] that the problem of detecting
connectivity in a visual scene can be solved parsimoniously by a recurrent network, but not by
feedforward MLPs; presumably, the search for a connected path through a cluttered workspace
imposes similar computational requirements. Also, there are reasons to expect better perform-
ance from such networks in regard to generalization and parsimony (see Chapter 10), temporal
chunking [16], etc. In writing Chapter 3 and section 2, I have deliberately tried to specify the
algorithms so that you can plug in this option directly, without additional information.

There would be certain difficulties, however, in making this option practical. Suppose, for
example, that it takes 100 iterations through the underlying feedforward network (fin equation
18 of Chapter 3) to achieve converged output for the simultaneous-recurrent network F.
Clearly, if we need frequent control actions out of the overall controller (e.g., 1,000 hertz
operation), we would need very fast operation in the feed forward network (100,000 hertz in J
this example!).

Surprisingly, there is evidence that the human brain actually does this in its higher centers;
Walter Freeman has stated that the recurrent inner loop of the hippocampus runs at 400 hertz,
even though the overall system runs at something more like 4 hertz [1].
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Stability may be a serious issue with systems like this. Indeed, occasional instability may
be an unavoidable price of very high intelligence. It is hard to imagine these networks obeying
Lipschitz conditions of the kind that Narendra' s theorem requires (though Lipschitz conditions
can probably be maintained, with proper care, for a wide range of feedforward nets). Therefore,
it might turn out to be important to avoid using such powerful systems in applications where
"Terminator 2" modes of behavior are available and overrides could be bypassed.

To take all this a step further-either with feedforward Critics (if timing requires their use)
or with simultaneous-recurrent nets--one can modify DHP as follows. Instead of adapting
I.{R(t), W), adapt t(R(t), t(R(t -1 », W), using the exact same procedure given in section 2.
Treat the I..(t -1) argument as a constant input, and do not use the methods of Chapter 10 to
backpropagate derivatives back to time t -1, etc. Backpropagation through time (or the
equivalent) is crucial for adapting short-term memory units, but the purpose of recurrence here
is not to add additional memory. The assumptions of dynamic programming suggest that the
short-term memory should be implemented inside the Model network (which defines the state
vector), not within the Critic network. Adding this lagged input to the Critic is like giving a
human chess player more than a quarter-second, ifhe needs it, to evaluate or critique a complex
strategic situation.

2. In neurocontrol, complex hierarchies and distributed metasystems are usually not necessary.
Neural networks can easily implement hierarchical or distributed calculations simply by
choosing an appropriate pattern of connectivity (i.e., by zeroing out weights Wjj outside a
designated graph of connections). When we have prior knowledge that tells us a hierarchical
solution to a problem will work, it does make sense to use that knowledge in setting up the
initial state of the network; however, it also makes sense later on to give us and the network
freedom to make and break connections through "pruning" (see Chapter 10) and "random"
exploration of possible new connections. A single neural network is itself a distributed system,
and it can be implemented as a network spanning many locations. The well-known biologist
Pribram has argued that the brain is a "heterarchy," not a hierarchy.

When combining neural nets and other architectures, however, hierarchical designs can
make more sense. For example, teleroboticcontrol of the main arm of the space shuttle presents
a severe challenge to classical control theory. Seraji developed a hierarchical control scheme
that worked on a Puma robot arm to some degree, but was computationally intensive and never
deployed. This past year [18], the joint controllers used by Seraji were replaced by neu-
rocontrollers (using direct inverse control andcomputationally affordable), with a substantial
improvement in performance, at least in simulations. The NASA program officer has author-
ized tests on the real shuttle arm, and hopes for a tenfold increase in productivity compared to
the present teleoperation system. Even though there is no theoretical need for hierarchies when
working with neural nets, there is certainly no harm in using them to get a quick startup in
applications of this sort.

3. A simple two-level hierarchy can nevertheless be useful when the underlying optimization
problem requires a long cycle time to analyze, but high frequency control is needed. In this
situation, we could build one adaptive critic system-including a Critic and a Model network,
but not necessarily an Action network-to operate with a long cycle time, 9, long enough to
let us use simultaneous-recurrent networks. Then we could build another adaptive critic
system, using a short time cycle (1), based on feedforward networks. The second system would
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be "independent" of the first, except that in adapting the low-level Critic, in equation 7, we

would replace U(R(t), u(t)) with something like:

J-(R(t- + 9)) + U-(R(t-)) -J_(R(t_)) + U-{R(t), u(t)), (34)

where t- is the most recent value of t divisible by 9 (i.e., the latest clock tick for the upper
system), whereJ+is the output of the upper Critic, and U. indicates high-frequency components
of utility that cannot be tracked at the upper level. (Total utility equals U+ + U..) (A similar
arrangement could be adapted to DHP or to an upper level ofGDHP and a lower level ofDHP.)
The lower system would also be allowed to input information-to be treated like an additional
set of external observables-from the upper system. In a variant of this, we could allow the
upper system to have an Action network, and calculate the total action vector u(t) as the sum
of u+(t+ + 9) and u-(t). There is evidence that the human brain uses some such arrangement
[1,2]; for example, Llinas has recently studied 8 to 10 hertz muscle tremors in humans due to
the low frequency of signals from the cerebral cortex down to the olive, which appears to act
as a Critic for the lower motor control system. The lower motor system is analyzed in more
detail as a neurocontroller in [25].

13.5. ERROR CRITICS: AN APPROACH TO THE REAL-TIME
ADAPTATION OF TLRNS

The problem of forecasting may be seen as a simple generalization of the problem of supervised
learning. As before, we start out by observing two sets of variables over time, X(t) and Y(t). As before,
we wish to adapt a network that outputs a forecast of Y(t), based on our knowledge of X(t). The only
difference is that we permit our network to remember information from earlier time periods. In any
applications-such as adaptive control-this kind of memory is crucial; in fact, it gets to be absurd
to think of control problems so simple that the state of the plant depends only on current control

actions and not at all on its previous state!
Nevertheless, because of our emphasis on control here, I will formulate the forecasting problem

in a different but equivalent way, tied directly to the needs of adaptive critic systems. Let us suppose
that we are trying to forecast a vector of observed variables, X(t + 1), as a function/ of the state at
time t, the action vector u(t), and weights W. Following the procedures of Chapter 10;.. we will choose
/ to be a time-lagged recurrent network (TLRN) and allow for the possibility that X(t) could be an
input to the network as well. In the neural network field, people usually visualize recurrent nodes,
Rj(t), as being "inside" the network; however, it is easier to describe our methods in the general case
by treating the output of recurrent nodes as an output of the network, an output that is then input to
the network in the next time period. Putting all of this together, we are trying to minimize error in the
following scheme, where/is a single static network implemented by a single subroutine, with two

output vectors (fx andfR):

i(t + 1) = f.t(X(t), i(t), R(t), u(t), W) (35)
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R(t + 1) = fR(X(t), !(t), R(t), u(t), W) (36)

Error = ~E(t) = ~X(t), !(t), W). (37) ~

As an example, f could be a two-stage system, consisting of an MLP which inputs R(t), u(t), and
X(t), and a simple filtering system which calculates X(t) as a weighted average of X(t) and !(t) (see
Chapter 10). Intuitively, R(t) in this system represents memory from before time t. (The R in this
system is slightly different from the R of earlier sections, but there is a close connection.)

There are two exact ways to adapt the system in equations 35 through 37. The usual time-forwards
approach has been discussed elsewhere (see Chapters 3 and 5) and will not be discussed here. The
cheaper approach, backpropagation through time (B1T), has also been discussed elsewhere (see
Chapter 10) but is important as a first step in understanding the Error Critic.

Using BTT, one starts from initial guesses for the weights (Wand W), one calculates the gradient
of error across all times t with respect to the weights, and one adapts the weights in response to the
gradient. The only new complication lies in how to calculate the gradient. If we ignore times 0 and,
T (which will not affect our real-time learning method), BTT yields the following equations for the
gradient here:

F _R(t) = F JR(X(t), !(t), R(t), u(t), W, F _!(t + I), F _R(t + 1» (39)

F_W = F_W+F_Lw(X(t),!(t), W)+ FJw(X(t), !(t), R(t) , u(t), W,F_!(t+ l),F_R(t+ 1».(40)

As in Chapter 10 (see Appendices Band 0), we only need to call one dual subroutine, F J, which
yields all three of the outputs required here (F -ft, F JR' and F Jw). Equations 38 and 39 force us to
go backwards through time, since F _!(t) and F _R(t) cannot be calculated until after F _!(t + 1) and
F _R(t + I) are known.

In a previous paper [19], I have proposed that we treat the problem of adapting the recurrent hidden
nodes as a control problem. More precisely, I proposed that we turn this problem on its head, by
treating E(t) as a measure of utility and by treating R(t) as a control signal. To solve that control
problem over time, in a real-time manner, I proposed the use of an adaptive critic control system [19].

Schmidhuber [20] has actually attempted this approach, using a Critic network adapted by HOP.
Unfortunately, HOP has many limitations, discussed in detail above. The limitations of HOP relative
to OHP are especially severe when there is an exact model already available. In this application, the
forecasting network itself already provides what amounts to an exact model of how error is generated
as a function of R(t).

To apply OHP or AOOHP to this problem, one might go through severe agonizing to try to identify
the appropriate state vector, and so on. Fortunately, there are very straightforward ways to use these
methods here that do not require anything like that degree of complexity.

Let us define a Critic network, A., which inputs X(t), X(t- I), u(t), u(t- I), etc., and outputs two
quantities (AR and Ax), which attempt to approximate:
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A.t(X(t) ..., WA) ~ F J.t(X(t), i(t), R(t), u(t), WA, F _i(t + I), F _R(t + I» (41)

Ak.(X(t) ..., WA) ~ F Jk(X(t), i(t), R(t), u(t), WA, F _i(t + I), F _R(t + I». (42)

There are several ways to implement and use this kind of Error Critic. For example, we could go
through the following steps for any time t:

I. Obtain (observe) X(t).
2. Calculate u(t) = A(X(t), R(t».

3. Calculate:

A!(t) = F _Lt(X(t), i(t), W) + At(X(t), ..., W).)
AR(t) = AR(X(t), ..., W).).

4. Set:

W = W -LR(t) * (F _LMX(t), i(t), W)

+ F JMX(t -I), i(t -I), R(t -I), u(t -I), W, A~(t), AR(t»).

where LR(t) is a learning rate (that can be adapted over time, etc., as in Chapter 3).
5. Update WA in A to inputs (X(t -I), X(t -2), ...) and targets:

A"i = F -fX:(X(t-I),i(t-I), R(t-I), u(t-I),W, A~(t), AR(t»

A"J'? = F fi(X(t -I), i(t -I), R(t -I), u(t -I), W, At(t), AR(t».

6. Calculate and store for the next round:

i(t + 1) = ft(X(t), i(t), R(t), u(t), W)

R(t + 1) = /R(X(t), i(t), R(t), u(t), W).

As a practical matter, of course, there are many ways to try to "pipeline" these calculations. For
example, one might merge/and A into a single network; however, with A as an output, it is essential
to have inputs for two consecutive time periods, and experimentation will be needed to find the most
effective subset of the allowable inputs. Alternatively, one might split/up into two different networks,
so that R(t + 1) could be input instead of R(t) to the Action network. (This would be closer in spirit
to our prior sections.) Or one could adapt the Critic only on every second time cycle. One could allow
the Critic to accept input only from time t, but then use feedback from derivatives propagated through
the Critic to affect the adaptation of R neurons used as input to the Critic. One might even try to use
GDHP in this application.

In early tests of this possibility, it would be good to compare against backpropagation through time
(and possibly against simple truncation, which approximates the difficult cross-time terms as zero);
after all, the Error Critic is still only an approximation to BTf.
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From a biological point of view, this arrangement may seem moderately complex, but the giant
pyramid cells of the cerebral cortex involve a very similar kind of complexity (including an external
clock pulse used to synchronize the various flows of information). The same arrangement, but without
equation 37, can be used to adapt an Action network with time-lagged recurrence, something which
can be useful when there is an extreme need to boost computational speed even at the cost of slower
learning (as in the cerebellum [25]).

When building a complex neurocontrol system, it can sometimes be confusing to have one Critic
network evaluating actions and another adapting recurrent neurons. Therefore, I sometimes use the
notation AE or A(E) to represent the Error Critic.

13.6. HOW TO ADAPT AND USE A TRULY STOCHASTIC
MODEL NETWORK

6.1. Introduction

In order to adapt forecasting networks, most neural network researchers now use equations similar
to equations 35 through 37 in section 5. When Model networks or system identification are needed,
in any of the five forms of neurocontrol, those researchers would simply adapt a forecasting network.
In most current applications, that is probably good enough.

Nevertheless, the theory behind adaptive critics allows for the possibility of a general stochastic
model. It is common to build a stochastic model by simply writing:

Xj(t+ 1) = tj(t + 1) + CJjej(t + 1), (43)

where ej represents random noise of unit variance, and CJj2 represents the variance of the error in
predicting Xi. (In other words, CJj2 is simply the average value of the squared error.) One can build a
neural network to generate the forecasts, using the methods of section 5, and estimate CJj simply by
measuring the error.

Section 2 and Chapter 3 described ways of adapting Critic and Action networks based on observing
the actual values ofR(t+ I), and feeding back derivatives through the Model network. That procedure
is legitimate for stochastic models built up from equation 43. It is equally legitimate to use a

hypothetical R(t) as the starting point in the same procedure, and to simulate R(t + 1) using equation
43, and then to treat the simulated R(t + 1) as if it were real. Such a simulation required that we
generate random numbers to represent the ej.

Unfortunately, equation 43 does not represent a general stochastic model. It assumes that the matrix
< eeT > is diagonal, and that the randomness in the observed variables always follows a normal
distribution. Conventional control theory usually allows for any matrix < eeT >, although it does have
problems with nonnormal distributions.

In 1977 [7], I suggested that we consider a more general model that may be written as:

Xj(t+ I) = CJ;Yef(t + 1) + Dj(R(t + 1), other information(t» (44)
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R;(t+ 1) = cl:ef(t + 1) + Pi(information(t», (45)

where X is observed and R is not. D stands for "Decoder," and P for "Predictor." This architecture
can reproduce essentially any patterns of noise we like. Those researchers who have proven that MLPs
can approximate any bounded function might want to study the ability of networks like this to

reproduce arbitrary probability distributions.
The challenge here lies in how to adapt the networks D and P when R is unknown. The classical

likelihood function for this problem involves integrals over all possible values of R [7]. We could
approximate these integrals, in theory, by performing a Monte Carlo integration/simulation, directly
based on equations 44 and 45, but this turns out to be extremely inefficient from a numerical point
of view. This section will propose a new design, which should be more efficient. The reader should
be warned, however, that the adaptation problem here is extremely difficult. The design below has
passed some simple tests of consistency, but this is not enough to prove that it will work without
revisions in the general case. When the "Predictor" network is removed, this design can also be used
as a kind of unsupervised feature extractor; however, it is radically different from other forms of
unsupervised learning now in use in the neural network field.

The method below is a slight variant of a method that I first proposed in 1977 [7]. That method
was developed as a way of addressing the nonlinear case, based on integrals that represent the concept
of "relative entropy" or "mutual information." The variant given here is different, above all, because
it does pass the basic consistency checks in the linear case.

The method below may be thought of as a nonlinear, neural-net generalization of a well-known
classical statistical method: maximum likelihood factor analysis [21]. Maximum likelihood factor
analysis does have difficulties when one of the noise terms (O"ix) is infinitely small. This makes it
desirable to replace the maximum likelihood approach with a more robust approach. That will be a

task for future researchers.
The final part of this section will discuss how the method below ties in with classical debates on

realism versus phenomenology, and on fuzzy versus probabilistic reasoning.

6.2. The Design

The Stochastic EncoderlDecoder/Predictor design is illustrated in Figure 13.5. Like equation 57, this
figure assumes that Xi equals tplus some Gaussian white noise. However, it would be straightforward
to adjust this design to predict something like net; instead of Xi.

To implement Figure 13.5, we can go though the following sequence of calculations. First, we can
plug in information from time t -1 into the Predictor network, and use the Predictor network to
calculate il(t). Then we can call on the Encoder network, which inputs X(t), along with any or all
information available to the system from time t -1. (This could, in principle, include the prediction
il(t), which does not incorporate real information from time t.) The output of the Encoder network is
a vector, R, which is a kind of best guess of the true value of R. The next step is to generate simulated
values ofR, R', by adding random numbers to each component RI. Finally, the Decoder network
inputs these simulated values, R', along with information from time t -1, in order to generate a
prediction of X. These calculations depend on the weights inside the Encoder, Decoder, and Predictor
networks, and also on our estimates of O"iR and O"iX.
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Figure 13.5 The Stochastic Encoder/Decoder/Predictor..
The Predictor network and the Decoder network in this scheme are straightforward forecasting

networks that can be adapted exactly like the forecasting networks of section 5. They could even
combine an upper layer of associative memory with hidden memory nodes adapted by backpropaga-
tion, if the application requires such complexity. The estimation of O";x is straightforward. (For
example, O";X can be estimated as the observed root mean square average of X; -t.) 8 (

6.3. How to Adapt the System

The adaptation of the Encoder network and the parameters O";R is more difficult. Conceptually, we try
to adapt all parts of the network together so as to minimize:"

i

E = L(X;-t(R'(x,if,eR»)2/(0"'l)2+L(f:l:j-Rj{x»2 (46)
, ; ; j
'C

+ L log (O"'lf + L «off -log (of)1.
; j

In performing this minimization, it is critical that we account for the effect of if and of the Encoder
network in changing the errors of the Decoder network; that is why those arguments of the functions
are spelled out carefully in equation 46.

In particular, this arrangement requires that we use backpropagation-gradient-based learning-to
adapt the Encoder and the parameters O";R. The gradients are calculated as shown by the dashed lines
in Figure 13.5. These dashed lines represent the calculations that feed back the prediction errors, .Ir -



516 HANDBOOK OF INTELLIGENT CONTROL

used to adapt all parts of the network simultaneously. For the Encoder, we calculate the relevant

derivative of Ewith respect to Rj as:

F_Rj = 2(Rj-~J+F_~'j (47)

where the first term results from differentiating the R-prediction error in equation 46 with respect to
Ri' and the second term represents the derivative of the X-prediction error, calculated by backpropaga-
tion through the Decoder network back to Rj'. Note that equation 46 requires us to divide the Xi
prediction error by (O"ixf, before we begin the backpropagation. (To make this scheme more robust,
we might want to put an arbitrary floor on what we are willing to divide by here.) To adapt the Encoder
network, we then propagate the F _R derivatives back through the Encoder network to the weights in

that network, and adjust them accordingly.
Intuitively, equations 46 and 47 say that we adapt the Encoder network so that the resulting R is

both predictable from the past and useful in reconstructing the observed variables Xi. If we delete the
Predictor network, and use this scheme as a kind of feature extractor, then these equations are really
telling us to minimize the variance of R, so as to prevent a kind of indirect bias or divergence that

would otherwise sneak in.
In a similar vein, we adapt the parameters (O"jRy based on:

aE R' a J/2 J/2~ = F- j * ej+-a J/2 ((OJ) -log (OJ)),
a(Oj) (OJ)

where the right-hand term tells us to make O"jR larger, but the left-hand term will stop us from doing
so once the random numbers start to cause large errors in decoding.

Whenever any of these networks makes use of information calculated within the system at time
t -1, we must propagate derivatives of equation 46 backwards to the networks which produced that
information, and add them to the derivatives used to adapt these networks. All the considerations in
section 5 still apply, when we try to minimize this measure of error over time.

6.4. Using Stochastic Models in Adaptive Critics

Section 2 and Chapter 3 include several procedures for using a Model network that require that
derivatives be propagated through the Model network. We had a choice of two procedures, one based
on a simulation of R(t + 1) and the other based on using the actual observations from time t + 1.

Using the design in Figure 13.5, it is easy to generate a simulation of R(t + 1), starting from data
at time t. First one uses the Predictor network to generate ~(t + 1). To simulate RJ{t + 1), one adds
~i(t + 1) to a random number, whose variance is set to the observed average error in predicting Rj
from Ri. Next one generates a new set of random numbers, eR, and generates R'(t + 1) as shown in
Figure 13.5. Finally, one uses the Decoder network to generate t and a third set of random numbers
to simulate X. In backpropagating through this structure, one simply proceeds as if the random

numbers had been external inputs to the system.
To use actual observations, X(t + 1), one plugs these observations into the Encoder network, which

then outputs the actual values of R(t+ 1). One uses these actual values in simulating R'(t + 1), which
is then plugged into the Decoder network to generate t(t + 1). We still use random numbers in
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simulating R', but we use actual errors, in effect, to infer what the random numbers "actually were"
in generating R and X. In backpropagating through this structure, we proceed exactly as we did before.
The continuing presence of randomness in this structure reflects our uncertainty, even after the fact,
about the true value of R(t + 1). This general approach follows the structure of our uncertainty, but
its net effect on the consistency of adaptive critic systems has yet to be verified even through linear

examples.

6.5. Checks of Consistency in a Linear Example: Overview

The remainder of this section will verify that the procedure given above can give the right answer, in
a simple linear example that does not involve any prediction. Even in the linear example, these checks
will not be totally complete. I will prove, for example, that we get the right Decoder network if the
Encoder network and oR have already been adapted correctly. Instead of considering real-time
learning effects, I will consider the equilibrium that results after an infinite number of observations
are availabl~; in other words, I will assume that our estimates are all based on the true expectation
values of all observable quantities. I will not consider issues of uniqueness and stability for the whole
system, even in the linear case. In summary, these are really just consistency checks; they leave open
a lot to be done in future research. In actuality, it has taken considerable effort to find a system that
passes these basic tests, and I have been surprised to see how many realistic-looking designs do not.

For all these tests, I will assume that we are observing a system governed by:

x(t) = AR(t) + e(t), (48)

where:

<RRT> = 1 (49)

and:

A -X 2 (50)
< ej(t)ej(t) > = ~ = 1,,(0;) ,

where R;(t) and e,(t) are independent normal random variables. This system is not a true dynamic
system, nor is it anything like a realistic plant; however, it does capture the essence of the difficulty
here. (Adding dynamics basically just changes the expect~d values or means from which the
probability distributions are calculated.) There is no loss of generality in assuming unit variance for
the unobserved variables R, as in equation 49, since we can always rescale them without changing
any observable characteristics of the model. Equation 50 reflects our initial approach in equation 44;
the term on the right is not an identity matrix, but a mathematician's way of representing a diagonal
matrix.

To begin with, I will assume that our network is adapted to minimize E, as defined in equation 46,
except that I replace:

L «aJ)2 -log (aJ)1
j
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by:

Tr(,sJl) -log det ,sJl,

where sR is the covariance matrix used to generate the random vector eR. (Note that my notation for
eR here is slightly different from what it is in Figure 13.5.) I will assume that the "neural network"
takes the form:

R = !it- (51)

R' = !it- + eR (52)

; = aR' = a(!it- + eR) (53)

< eR(eR)T> = ,sJl. (54)

In the actual operation of this system, the minimization of E would be used to adapt the Encoder and
Decoder simultaneously; however, for simplicity, I will only carry out certain easier tests that are
necessary but not sufficient (though they are highly suggestive) in showing that the system will work
properly. More precisely, I will demonstrate, in order, that: (1) for a certain value of sR and a correct
Encoder, we adapt the weights in the Decoder correctly; (2) for a correct Decoder, we adapt the
weights of the Encoder correctly; (3) with a correct Decoder, we adapt the values of SR to the values
required in part (1). In all cases, I will assume that the parameters CJjX have already been estimated
correctly. In these calculations, it will turn out that a correct form of SR is a matrix that need not be
diagonal. However, one can always rotate the vector R so as to make that matrix diagonal; for that
reason, efforts to minimize E as defined in equation 46 will always give us a result that is correct
within the more general matrix framework. This fine point will be explained in more detail below.

There is no way to do these calculations without heavy use of matrix calculus and statistics.
Before checking for the correctness of what we adapt, we must first decide what the correct values

are. Comparing equation 47 to equation 53, we clearly want:

a = A. (55)

A correct Encoder should output the best estimate of R(t) given knowledge of x(t), based on
knowledge of equation 48. We can calculate this best estimate, !it-(t), simply by regressing R on x,
using classical methods [15] that are known to minimize square error:

~ = <RxT> «XXT»-I.

To work this out, note that our original linear model implies:

< XXT > = < (AR + e)(AR + e)T > (56)

= <ARRTAT>+<eeT> = AAT+sX.
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(Note that our assumption that e is random implies < ex > = < eR > = 0.) Likewise:

<RxT> = <R(AR+e)T> = <RRTAT> = AT.

Substituting this into our formula for 13, we deduce that the correct value is:

13 = A T(AA T + S')-I. (57)

6.6. Checking the Adaptation of the Decoder

For this check, we assume that the Encoder is already adapted corrected, as defined by equation 57:

13 = A T(AA T + S')-I. (58)

We also assume that SR has been adapted to the following value:

sR = I-AT(AAT +S')-IA. (59)

Our task here is to figure out what the Decoder will be adapted to.
Looking at equation 46, we can see that the Decoder is simply being adapted to minimize square

error in predicting x(t) from R'(t). From classical statistics [15], we know what this results in, in the
linear case:

(X = < XR,T > « R'R,T »-1 .

Clearly this will lead to a unique solution for (X. We want to verify that it will lead to the correct
solution; in other words, we want to verify:

A = < XR,T > « R'R,T »-1

= < x(j3x + eR)T > « (j3x + eR)(j3x + eR)T »-1 (60)

= <XXT >I3T(I3<XXT >I3T +sR)-I.

This is equivalent to:

A(I3< XXT >I3T + sR) = <XXT>I3T.

Substituting in from equations 56 and 58, and recalling that AA T and S" are symmetrical, we can see

that this is equivalent to:

AsR+A(AT(AAT +S')-I(AAT +S')(AAT +S')-IA) = (AAT +S')«AAT +S')-IA),
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which reduces to:

A~+AAT(AAT +5'")-IA = A. (61)

If we multiply equation 59 on the left by A, we can easily see that equation 61 will be true. Since
equation 61 is equivalent to equation 60, which we were trying to verify, we have succeeded in
verifying what we wanted to-that the Decoder weights will, in fact, be adapted to equal the correct

values,A.

6.7. Checking the Adaptation of the Encoder

For this test, we assume that the Decoder has been adapted to the correct value, such that (X = A. We

also assume that the S'matrix of equation 50 is correct, and that there is no Prediction network (i.e.,
thatt = 0). In this case, we are trying to minimize those terms in equation 46 that are affected by the
encoder matrix 13. We are minimizing the following effective error function with respect to 13:

1\ Tc.x-1 ~ -T
RE.ff= «x-x)" (x-Xj>+ <R >

-I

= < (x -AR,)T S'" (x -AR') > + < llTR >

= < (x -A(J3x + eR»T(S')-I(x -A(J3x + eR» > + «~)T(J3x) >

= < xT (I -AI3)T (Sj-I(1 -AI3>x > + < xTI3TJ3x > + terms not affected by 13.

Thus, we want to minimize the following matrix trace with respect to 13:

Tr( < x:x;T > ( (I -AI3)T (5'")-1(1 -A 13) + I3TI3 ». (62)

We can simplify this minimization problem slightly by defining matrices:

Z = < XXT >

C = (S')-IA
Q = AT(S')-IA +1.

Using this notation, we are trying to minimize the terms in equation 62 that depend on 13:

E.ff= -2 L ZijCjkl3ki + L Zij 13~ Qkll3li. (63)

ij,k ij,kJ

Differentiating equation 63 with respect to every matrix element l3ij, and collecting terms carefully,
we arrive at the following condition for a minimum:

0 = -2CTZ + QI3Z + QI3Z

:. CT = QI3.
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Going back to our definitions, this yields a solution for 13 of:

13 = Q-1CT = (AT(S')-IA +/)-IAT(S')-I. (64)

In summary, our Encoder will adapt to the values shown in equation 64. Our problem is to verify that
these values are the same as the correct values, the values given in equation 57. In other words, we
must verify that:

AT(AAT +sr}-l = (AT(sr}-IA +/)-IA1sr}-I. (65)

To verify this, we may simply multiply both sides on the right by (AA T + S") and on the left by A T(S")-1 A

+ I. This shows that equation 65 is equivalent to:

(AT(S')-IA +/)AT = AT(S')-1AAT +S'), (66)

which is easily seen to be true. In short, since equation 65 is equivalent to equation 66, and equation
66 is true, we may deduce that equation 65 is also true. Thus, the weights we adapt to (given in
equation 64) are, in fact, equal to the correct weights as defined by equation 57.

6.8. Checking the Adaptation of sR

For our final check, we again assume that the Encoder is correctly adapted, so that a = A. To figure
out what ~ will be adapted to, we once again begin by figuring out what will be minimized as a
function of SR. As in our derivation of equation 62, we calculate the terms in < E> affected by SR:

Eeff = < (x -~T(S')-1x -~ > + Tr(,sJl) -log det,sJl

= < (eR)T A1S')-IAeR > + Tr(~) -log det,sJl + terms not affected by,sJl.

This reduces to an effective error function to be minimized of:

Eeff = Tr(,sJlM) -log det,sJl, (67)

where I have defined:

M = AT(S')-IA+I. (68)

From matrix calculus (in a form that recurs quite often in classical statistics [14,22]), we know that
the minimum of equation 67 occurs when:

,sJl = lfl. (69)
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Our basic task in this section is to verify that ~ we adapt to--which is given in equations 68 and
69-will, in fact, equal the value we required earlier, in equation 59. In other words, we need to verify

that:

(AT(S")-IA+J)-1 = I-AT(AAT+S')-IA. (70)

To verify this, we simply multiply the right-hand side of equation 70 by I + A T(Sj-l A, and verify that
we arrive at the identity matrix. When we do this, we get:

(I +AT(Sj-1A)(I -AT(AAT + Sj-1A)

= I +AT(S")-IA -AT(AAT + S')-l A _AT(S')-IAAT(AAT + S')-IA

= I +AT(S')-IA -AT(I + (S")-IAAT)(AAT + S")-IA

= I +AT(S')-IA -AT(S")-I(S' + AAT)(AAT + S')-IA

=I+AT(S'}-IA-AT(S'}-IA = I,

exactly as required.
To complete this discussion, we need to comment on the diagonal form of ,sJI, which our actual

neural network design requires. We have just proven that a modified form of E-allowing for arbitrary
,sJI-is minimized for appropriate combinations of a, ~, and ,sJI. (This modified form reduces to the
original form when ,sJI is, in fact, diagonal.) However, we know that there are equivalent ways to
represent the exact same stochastic model, simply by rotating the vector R. Such a rotation does not
affect the matrix <RRT > =1. Since AT A is a positive definite real matrix, we know that we can always
arrive at an equivalent form of the model that diagonalizes AT A, and therefore diagonalizes ,sJI.
Therefore, if we try to minimize E subject to the constraint that ,sJI be diagonal, we know that one of
the unconstrained optimal solutions will still be able to satisfy that constraint. Thus, in building a
system that minimizes E subject to that constraint, we are certain that we still can arrive at a solution
that solves the unconstrained problem as well. No constrained optimum can lead to an E lower than
that of an unconstrained optimum; therefore, we can be sure that a solution equivalent (within rotation)
to the correct solution will emerge as a minimum of the constrained problem.

As stated above, there is still more theory to be developed, even in the linear case, but this does
appear to be a promising beginning in an area that has been largely neglected.

6.9. Implications for Realism versus Phenomenology,
Fuzzy versus Bayesian, Etc.

The design in Figure 13.5 has serious implications for some very old arguments. There are at least
three competing theories for how the mammalian brain represents uncertainty:~
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1. That it does not really represent uncertainty at all-that it uses methods like those of section
5 to build up any implicit representation of uncertainty

2. That it uses methods like those described here, which account for cross-correlations at the same
time t, but use methods like those of section 5 (in adapting the Predictor and Encoder) to
represent more abstract patterns of correlation over time

3. The radical Bayesian or realistic theory, in which aU "short-term" memory takes the form of
R vectors with uncertainty factors attached

These choices have their parallel in engineering. The first approach is incapable of representing the
statistics of a general vector ARMA process. The second approach is close to the approach used most
by statisticians [15,22] in describing vector ARMA processes; in that formulation, these processes
are completely and uniquely identifiable. The third approach is commonly used by engineers [23] in
describing such processes.

In Kalman filtering [23], the state of the plant is summarized in one vector, R (usually denoted as
"x"). This state estimate (and its covariance matrix) incorporates aU memory of the plant. At each
time t, the current state estimate is based on the forecasts, i, and the current observations X(t). There
are forecasts corresponding to aU state variables, and aU state variables are updated by methods similar
to those of this section.

The methods of this section could be used to implement a radically realistic design, similar to
Kalman filtering. To do this, one simply forbids the three networks from using any internal memory
units. The Encoder and Decoder networks would be forbidden from using any information from time
t -1 except for fl. As a practical matter, it would seem more sensible to limit such memory units
rather than forbid them altogether; the challenge would be to develop criteria for keeping them or
deleting them (or adding them toR) after the fact, based on an empirical measure of their performance.
Research on these topics has hardly begun.

The biological evidence on these choices is also unclear as yet, because there are several types of
pyramid cells in the cerebral cortex and other cells in the thalamus that could plausibly be involved
in the different schemes.

The issue described here concerns realism versus phenomenology as principles used by the brain.
This is logically quite distinct from the parallel debate concerning objective reality in the physical
universe, a debate that also remains unresolved [24].

13.7. CONCLUSIONS

Research approaches and preliminary designs exist for bridging most of the gap between neurocontrol
as it is used today and the form of neurocontrol that will be needed in order to understand (and
replicate) true intelligent control as it exists in the brain. To fulfill this potential will take considerably
more work on the part of many researchers working in many different areas, and drawing on many
different disciplines, but the scientific importance of the work is enormous. With proper motivation
and encouragement, control engineers, cooperating with biologists, could playa decisive role in
making it possible to understand human learning and the human mind..
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