Recurrent Neural Networks for State Estimation

Lee A. Feldkamp and Danil V. Prokhorov
Research and Advanced Engineering

Ford Motor Company
Dearborn, MI, USA

Abstract

We explore the use of recurrent neural networks
(RNN) for state estimation, performing the same
role as adaptive systems such as Kalman filters
or particle filters. We demonstrate that RNN can
combine available information from measurements
with an implicit representation of state evolution to
produce state estimates that are competitive with
those produced by modern filter techniques.

1 Introduction

In earlier papers we have argued that time-lagged
recurrent networks can be trained to perform tasks
that are usually assigned to explicitly adaptive sys-
tems. We have argued further that the states of the
dynamical system represented by the RNN play the
role of the parameters of a conventional adaptive
system.

In this paper, explore the extent to which a re-
current neural network can be trained to perform
state estimation with results that compare favor-
ably with those of adaptive filters. Our high-level
justification for this exploration is that such adap-
tive systems may be viewed as nonlinear dynamical
systems and thereby subject to being represented
by recurrent networks. A more practical justifica-
tion is that the elements of state estimation seem
well within the capability range of properly trained
RNN.

We emphasize that we are not contemplating the
incorporation of neural networks to perform sub-
tasks in a conventional adaptive filter structure.
Instead, our approach is to supply the RNN with
the available information and entrust structuring
of the solution to the process by which the RNN is
trained.

We hasten to point out that much the same ap-
proach was proposed almost ten years ago by Lo

(see [1] and papers cited therein), claiming conver-
gence to a minimum variance filter. However, the
proof that supports this claim assumes effectively
that estimation at time step t has available to it
measurements for all previous time steps. This
storage is accomplished for purposes of the proof
with the aid of a special architecture that stores a
transformed version of all previous measurement
inputs to the network (thereby requiring a very
large number of nodes). As this architecture is not
practical for applications and is not used in the ex-
amples of [1], the utility of the proof is not clear.

In contrast to Lo, we make no claim that a
minimum variance result can always be achieved,
though we apply a far more powerful training
method than is used in [1] and have no difficulty
reproducing the quality of results presented there.

Recognizing that the forefront of state estima-
tion has moved beyond the use of Kalman filters,
whether linear or nonlinear, we take as our stan-
dard of comparison the results of approaches that
approximate general Bayesian methods, such as
particle filters.

2 State Estimation

2.1 General Remarks

Generically, we may regard state estimation as the
combining of measurement information with that
derived by evolving the state estimate at the pre-
vious time step. If the system is linear and process
noise and measurement noise are both Gaussian, a
Kalman filter is an obvious choice and is known to
be optimal. Even when these ideal conditions do
not hold, Kalman filters are often used, most com-
monly in the form of the extended Kalman filter
(EKF). Recent developments in nonlinear Kalman
filters [2, 3, 4] offer performance superior to the
EKF when nonlinearity exists in either the process
model or the measurement model, usually at the

price of increased computation.

In some cases, e.g., severe nonlinearity, the un-
derlying probability density functions may not be
treated adequately as Gaussian, and it may be nec-
essary to return to the general Bayesian framework
(from which the Kalman filter can be derived); see
ref. [5] for a recent tutorial. Grid methods and
particle filters, recently the subject of considerable
attention, are examples of methods that closely ap-
proximate the Bayesian approach under fairly gen-
eral conditions. Such methods tend to be computa-
tionally intensive but may be the preferred choice
for many applications. These methods produce a
probability density function, the state estimate be-
ing a by-product. At times a more direct calcula-
tion of the state estimate, produced at smaller cost,
could be advantageous.

2.2 Recurrent Network Approach

For definiteness, we consider here a specific class of
state estimation problems, viz., those in which we
wish to track the state of a low-dimensional non-
linear system observed with a potentially nonlinear
measurement model. We allow both process and
measurement noise to be of nontrivial magnitude.
We assume that we know the initial value of the
state vector, or at least its probability density func-
tion. In addition, we know the state equations (in
discrete-time form), the measurement equations,
and the process and measurement noise functions.
Finally, we have measurements at each time step.

We want the (fixed) RNN to take on the complete
calculation performed by a conventional adaptive
filter for this task, but we do not attempt to force
the RNN to mimic the parts of the filter process.
For example, in order to balance information prop-
erly, the network may need effectively to evolve the
state variables as in a Kalman filter, but we do not
hand-craft the network architecture to make this
happen.

We use knowledge of the process, measurement,
and noise models to generate copious training data.
Information, such as measurements, that is avail-
able at every time step is provided as part of the
network input vector. One-time information, such
as initial state values, is provided at the beginning
of each trajectory. The desired state values are
used as training targets, and we attempt to mini-
mize summed square differences of network outputs
from these targets. In this work, we are not consid-
ering the estimation of time-dependent variances or
other measures of confidence in the state estimates,

though one could attempt to learn them as well.

2.3 Expectations and Potential Pitfalls

We expect the RNN to combine explicit measure-
ment information with that from its internal rep-
resentation of state evolution. This should yield
state estimates superior to that available from ei-
ther information source separately. Naturally, we
desire the RNN performance to be as close as possi-
ble to that best alternative method operating with
the same information.

When either process noise or measurement noise is
decreased (and reflected in the data generated for
training), the estimation accuracy should improve.
On-line response to changes in the noise levels is
not considered here.

Because we treat the measurements as input to the
network, our approach may be vulnerable to mea-
surement functions that are not uniquely invert-
ible. However, the examples we have selected have
this property and our results suggest that it can be
overcolue.

Though we appeal to the very general representa-
tion power of RNN, we recognize that even if the
architecture selected is capable of solving a partic-
ular task, the solution may not be realized through
training.

3 Example 1

3.1 Problem Statement

We first consider the example discussed in [5] and
treated in other papers cited therein. The process
model is given by

Th—1 25wy 1
2 1+a3_,
+ 8cos(1.2k) + vg—1 (1)

T —

where the process noise v;_1 is Gaussian with vari-
ance (). The measurement model is

i
Zk = —+mn 2
¢ o= Ein @
where the measurement noise nj, is Gaussian with
variance R. As base values for noise variances, we
adopt @ = 10 and R = 1 as in ref. [5], but we
report results for other values as well.

The state variable xy, is a highly nonlinear function
of its value at the previous time step and is driven

by the sinusoidal term and by the process noise.
The measurement is ambiguous with respect to the
sign of xj. Hence, even in the limit of vanishing
measurement noise, accurate state estimation re-
quires knowledge of the state evolution sufficient
to define the sign of x.

As this problem is treated in ref. [5], the sinusoidal
term is regarded as known (i.e., k is always avail-
able) and the initial probability density function
for ¢ is known. An alternative and more difficult
setting assumes that the series starts with the si-
nusoidal term at an unknown value of k and that
the network is provided with three consecutive val-
ues of xy at the beginning of each trajectory.! We
will primarily discuss the easier problem statement,
but in Section 3.4 we report some results for this
alternative.

3.2 RNN Training

We generated four training files, each of length
10000, from equations 1 and 2, using the nominal
values () = 10 and R = 1 for generation of the noise
terms. We chose a recurrent multilayer perceptron
architecture of 3-5R-5R-1L, where the two hidden
layers of bipolar sigmoid nodes are fully recurrent
and the output node is linear. We choose start-
ing points for training trajectories randomly within
the files. At every step, the first network input is
the current measurement zj, and the second is the
value of the sinusoidal term 8cos(1.2k). For the
first step i of a trajectory, the third network input is

. i 25x;_ .
the mean value of z;, i.e., “5* + 77 +8 cos(1.2i).
i—1

For all steps thereafter, the third network input is
zero. In this way, the RNN is given information
equivalent to that used in the EKF, grid-based, and
particle filter methods discussed in [5].

The training process was multistream GEKF, as
described in [6]. We scaled network inputs and out-
puts by a factor of 0.1 for numerical purposes, but
all results will be reported with the original scal-
ing. We employed 40 streams, trajectory length 50,
and priming length 3. Derivatives were computed
with truncated backpropagation through time with
truncation depth h = 40, though a smaller value
would probably suffice. We trained for a total of
400 cycles, making 18 800 weight updates based on
752000 instances. This required less than four min-
utes on a 2 GHz PC running the Linux operating
system.

1In the absence of process noise, a feedforward network
mapping from x;_3, T 9, and xg_1 to xp appears to be
possible to essentially arbitrary accuracy, while accuracy
with only two lagged values is limited.

- x_kandx_k_net

1300

1240 1260 1280

time step k

1200 1220

Figure 1: A short segment of testing results for RNN
state estimation. The network inputs are
shown in the lower two panels. The top
panel displays the desired value for the
state variable zj and its estimate, drawn
with a dashed line.

The RMS error over the training sets (exclusive of
the first 3 points of each file) was 4.69. On two inde-
pendently generated test files, the RMS errors were
4.71 and 4.72. To dismiss concerns about sensitiv-
ity to initial conditions, we also tested the trained
network on all length-100 segments of the test files,
with overall RMS error of 4.72.

The error distribution was peaked about zero, but
with tails more extended than those of a Gaussian.
A typical segment of results, taken from within one
of the test files, is shown in Figure 1.

We also repeated the training process with two
much larger networks. In the first of these, the ar-
chitecture was 3-15R-10R-1L, resulting in test-file
errors of 4.67 and 4.69. In the second case, the ar-
chitecture was the same except that the third input,
after the first step, received the network output
with a one-step delay. The test-file errors were 4.69
and 4.72. The fact that these larger networks yield
only marginal improvements suggests that the orig-
inal network is capturing the essence of the problem
to the extent consistent with the levels of process
and measurement noise imposed.

3.3 Discussion of Results

In ref. [5], several different methods are applied
to this problem. The authors demonstrate clearly
that the extended Kalman filter is not effective, pri-
marily because it cannot handle multi-modal prob-
ability distributions, as required by virtue of the
measurement model. Much better results are ob-
tained with a variety of grid-based and particle fil-
ters, all of which are suited to multi-modal and
non-Gaussian probability distributions. The best
result quoted for any of these methods is an RMS
of 5.30. We carried out the grid-based procedure
with 50 cells as described in [5], obtaining an error
of 4.8, very close to our RNN result (it is not clear
why our grid result is better than reported in that
paper). Increasing the number of cells produced
little improvement. We also applied a 300-particle
SIR filter, again with an RMS error of 4.8. Hence
we speculate that an RMS error of about 4.7 is
close to irreducible. Further, the level of perfor-
mance achieved using an RNN seems to be com-
petitive with state-of-the-art alternatives, while al-
most surely being superior from the standpoint of
computational cost.

If the sign ambiguity of z; were to be entirely re-
moved, but no other information about the process
evolution is used, the error would depend only on
the measurement noise. We, simulated this situa-
tion by estimating |zx| as y2 when y, > 0 and as
0 otherwise, obtaining an RMS error of about 1.2.

We repeated the training procedure described
above with @ = 0, i.e., no process noise, obtain-
ing RMS errors of about 1.07 on the testing files.
The reduction from the value of 1.2 attributable to
measurement noise alone suggests that the network
is making use of some evolution information. How-
ever, applying a grid-based method with 300 cells
to this case, we were able to achieve an RMS error
of about 0.5. This suggests that the 3-5R-5R-1L
RNN used here is not fully exploiting information
from model evolution. Speculating that for opti-
mal performance in the limit of small process noise,
the network architecture should be enlarged, we re-
trained with the larger networks mentioned above.
The base 3-15R-10R-1L network gave test-file RMS
errors of 0.794 and 0.794. Including output-to-
input recurrence improved the results almost to
the level of the 300-cell grid-based method, yield-
ing errors of 0.612 and 0.518. This suggests that
when the error in the output is small, as in the
limit of small process noise, providing the output
recurrently as a network input may be useful. In
contrast, when the level of error is relatively large,

feeding back the output may not be beneficial (for
the base level of process noise, the RNN without
output-to-input recurrence was, if anything, supe-
rior).

We carried out the training procedure in the limit
of zero measurement noise, obtaining an RMS error
of 4.48 on the testing files.

From these various experiments, the residual error
in the base problem appears to result largely from
the ambiguity in the sign of zj,, primarily as a result
of process noise. As additional evidence, we note
that if the measurement model is changed to z; =

% + ny, which does not lead to sign ambiguity,
much smaller errors are obtained (RMS values of
0.85 and 0.84 on the testing files).

3.4 Alternative Problem Statement

As mentioned in Section 3.1, we can specify a
more difficult and in some respects more interest-
ing problem from the same model. Suppose we
are provided with the initial state of the system,
in the form of three consecutive values of xj for
an arbitrary value of k, and then are required to
estimate the sequence of values of zj, given only
the noisy measurement sequence. The sign ambi-
guity becomes particularly acute, because the only
information that can distinguish xj from —xj is
available only at the beginning of a trajectory. Es-
sentially, the estimating system must derive sign-
defining information from the provided three values
of x, and then retain it throughout the trajectory.
This is an example of a strongly hidden state [7].

We followed a training procedure similar to that of
Section 3.2, except that it was necessary to increase
the number of streams to 160. The network used
was 2-5R-5R-1L, the first input being the measure-
ment y;, and the second is the actual value of the
state variable zy for the first three steps of the tra-
jectory, and zero thereafter. Training was carried
out on four length-10000 data files. To help the
RNN to learn to disambiguate the sign, two of the
files have sign-reversed targets relative to the other
two. (Of course, the 3 values of z; provided at
the beginning of each trajectory are sign-reversed
as well.)

Training proved to be much more difficult than for
the base problem. However, after some experimen-
tation, a robust procedure was found. On the train-
ing data, an RMS error of 5.08 was obtained, with
comparable results on a pair of testing files. How-
ever, when we tested over all possible length-100

trajectories in the test files, we observed that for
about 0.6% of the starting points the network pro-
duced xj estimates that were approximately the
negative of the correct value. Another 0.8% had
a sign problem for at least part of the trajectory.
We conclude that either or both of the following is
true: 1) the three consecutive sequence values are
not always enough to specify the subsequent signs;
2) the training process does not always embed the
required sign cues stably into the network. This
conclusion is consistent with our observation that
increasing to four the number of values of xj, pro-
vided at the beginning of each trajectory greatly
improved the failure rate, to 0.03%.

4 Example 2

Our second example is similar in structure to the
first. For the process model we consider the Henon
chaotic map

v = 1—1427_ | +03z 2o +ve 1 (3)
The measurement model is
k= T} 4y (4)

This system has two state variables, which can be
regarded as zp and zr_;. Both the process noise
vp—1 and the measurement noise nj are Gaussian
with variances) and R, respectively. We chose
@ = 1 x 107?; values much larger than this were
found to cause x; to increase without bound. We
will present results for three values of R: 0.0, 0.16,
and 0.49. For ease of comparison, test files for these
values were generated with the same sequence of
random numbers.

The RNN training procedure was almost the same
as that for the first example. The network used
was 2-5R-5R-1L, where the first input is again the
measurement yi. The second input is the actual
value of the state variable xj, for the first three steps
of the trajectory, and zero thereafter. Training was
carried out on a single length-10000 data file and
tested on an independently generated file of the
same length. Details of the training procedure were
unchanged from those described above.

In the absence of measurement noise, R = 0, we
achieve an RMS error of 0.0029 on the test file. As
seen in Figure 2, the network estimate is virtually
indistinguishable from the desired value.

With measurement noise corresponding to R =
0.16, we get RMS error of 0.325 on the test file.

X kandx_k_net

N

MM\MMMWWWMNL
07 |
= .

9900 9920 9940 9960 9980 10000

time step k

Figure 2: A segment taken from near the end of the
file of testing results for RNN state estima-
tion for the Henon system with R = 0. The
network input is shown in the lower panel.
The upper panel displays the desired value
for the state variable z,. The estimate of
T, drawn with a dashed line, is barely vis-
ible.

From Figure 3 we see that the estimate follows the
correct value most of the time.

Increasing the variance of the measurement noise
to R = 0.49, we find the RMS error increasing to
0.522 and see from Figure 4 that the estimates are
further degraded; this is not surprising in view of
the large measurement noise (note how often zj
goes below zero).

Though we have not yet done so, it would be in-
teresting to apply the grid-based method or a par-
ticle filter to this problem. For the former, a two-
dimensional grid would be required, which would
substantially increase its complexity and computa-
tional burden.

5 Conclusions

We have illustrated the use of recurrent neural net-
works in state estimation. On nontrivial problems,
we find performance that is competitive with that
of recently studied general methods. This per-
formance varies in a reasonable manner with dif-
ferent underlying assumptions (such as noise lev-
els). Note, however, that because such assumptions
enter the training process at the data generation

27 x_kand x_k_net

1 —
o |

- _
9900 9920 9940 9960 9980 10000

time step k

Figure 3: A segment of testing results for RNN state
estimation for the Henon system with R =
0.16. The network input is shown in the
lower panel. The upper panel displays the
desired value for the state variable z, and
its estimate, drawn with a dashed line.

27 x_kand x_k_net

9900 9920 9940 9960 9980 10000

time step k

Figure 4: A segment of testing results for RNN state
estimation for the Henon system with R =
0.49. The network input is shown in the
lower panel. The upper panel displays the
desired value for the state variable z, and
its estimate, drawn with a dashed line.

stage, handling model changes during operation is
not as straightforward as for a parametric system.
In particular, one might have to switch from one
RNN to another. Alternatively, a single RNN could
be trained over a range of models, with or without

explicit information describing the current model.

Finally, we note that the RNN approach handles
extreme cases, such as the absence of measurement
noise, more gracefully than do particle filter meth-
ods.

References

[1] J. T. Lo. “Synthetic approach to optimal fil-
tering.” IEEE Transactions on Neural Networks,
vol. 5, pp. 803-811, 1994.

2] S. J. Julier, J. K. Uhlmann, and H.
F. Durrant-Whyte. “A new approach for filter-
ing nonlinear systems.” Proceedings of the 1995
American Control Conference, Seattle, Wash-
ington, pp. 1628-1632, 1995. Several later pa-
pers may be obtained from the authors. Cf.
http://www.ox.ac.uk/~siju.

[3] M. Norgaard, N. K. Poulsen, and O.
Ravn. “Advances in derivative-free state
estimation for mnonlinear systems.” Techni-
cal Report IMM-REP-1998-15 (revised edi-
tion), Technical ~ University of Denmark,
2000. Cft. http://www.imm.dtu.dk/nkp/.
A toolbox and report may be found at
http://www.iau.dtu.dk/research/control /kalmtool
html.

[4] E. A. Wan and R. van der Merwe. “The un-
scented Kalman filter,” in S. Haykin (ed), Kalman
Filtering and Neural Networks, Wiley, New York,
pp. 221-280, 2001.

[5] M. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp, “A tutorial on particle filters for on-line
nonlinear /non-Gaussian Bayesian tracking,” IEEFE

Transactions on Signal Processing, vol. 50, pp. 174-
188, 2002.

[6] L. A. Feldkamp and G. V. Puskorius, “A sig-
nal processing framework based on dynamic neural
networks with application to problems in adapta-
tion, filtering and classification,” Proceedings of the
1IEEE, vol. 86, no. 11, pp. 2259-2277, 1998.

[7] R. J. Williams, “Adaptive state representa-
tion and estimation using recurrent neural net-
works,” in W. T. Miller, III, R. S. Sutton, and P.
J. Werbos (eds), Neural Networks for Control, pp.
97-114. Cambridge, MA: MIT Press, 1990.

