
This paper records a 30-minute talk given in the Paul Erdos Lecture series in March,
2010. Though the talk was prepared for mathematicians with low Erdos numbers (a
widely respected measure of mathematical proficiency), I hope that the main
discussion will be simplified and clear enough to others. Under each slide I will also
insert further comments – some more elementary and explanatory, but others more
precise – under the ================== tracks.
These are not just footnotes. In some cases they are crucial to the research which
needs to be done next.

At NSF, our job is mainly to ask important questions – and then try to encourage and
support you to find the answers. In this talk, I will review some of the methods used
to make predictions across many disciplines in science, technology, and social
science. I will even mention a few partial solutions I have found myself to the
problem of accurate prediction in the face of complexity. However, by the end of the
talk, I hope you will agree with me that all the existing methods – including those
I have developed myself – are at best starting points. You could do better, and I hope
you do. That is why I am grateful for the chance to talk to you.

I will begin by motivating the problem, then defining it more precisely, and then
reviewing where we stand.

The published abstract for this lecture:

Mathematical Foundations of Prediction Under Complexity

Consider the following dynamical system: x(t) = h(r(t),e1(t)), r(t)=f(r(t-1),e2(t)),
where xRn , yRm, and where the vectors e represent random disturbance. The
challenge of vector prediction is to approximate the functions h and f, without prior
knowledge of what these functions are, based on learning from a finite time-series of
experience. This is a very well-known problem in statistics, but the rigorous
methods now available are simply not powerful enough to replicate or explain the
learning and prediction capabilities we see in the mammalian brain, where the
sampling time is essentially ¼ of a second, where n is over a million and m is much
larger than that. Thus to understand or to replicate “cognitive prediction” – a key
capability of the brain -- we need to do much better. Part of the solution is to move
forwards to addressing fixed grid prediction or graph prediction (where x(t) and
y(t) are vector fields over a fixed regular grid or a graph, and symmetry principles
are assumed), but it is also essential to exploit principles like “uninformative priors”
(reasonable “open-minded” assumptions about Pr(h,f)) and “relevance” (cost
measures for errors in prediction and modeling). A host of ad hoc methods (some
quite formal in structure) have become widely used in practical prediction work, in
engineering work and in economic forecasting in order to overcome the limits of
classical maximum likelihood methods, which essentially assume flat priors;
however, to achieve a higher degree of rationality, capability and unification of
methods – as required for “cognitive prediction” and for many practical applications
– it is essential to revisit the foundations and derive more general learning methods
on a more fundamental basis. This talk will review these various strands, stressing
crucial areas where new research is needed and it is hoped that research funding
may be augmented.

The term “prediction” here includes system identification, filtering and state space
estimation (as in control theory), a large part of signal processing, a large part of
machine learning, time-series identification and estimation, causal data mining, and
general-purpose methods for pattern classification and recognition. Among others.
A key part of the challenge is to develop a more unified approach, including courses
which prepare students across this breadth of approaches.

Better prediction in the face of complexity would have many practical benefits, but
the most important motivation, in my view, is what I show on this slide. This slide
depicts one of the research areas which I run at NSF, called Cognitive Optimization
and Prediction (COPN).

The real goal of COPN is to understand and reverse engineer the highest level of
intelligence we see in the brain – the ability of the brain to learn to predict and
understand its environment, and its ability to learn to do better and better in all
kinds of complicated new challenges in decision and control. People have talked
about trying to understand the higher level of brain intelligence for centuries and
centuries, but now, thanks to great advances in neuroscience, in technology and in
mathematical tools, the goal is finally in sight. We have a roadmap that could
actually get us there within this century, and maybe even within two or three
decades. In my view, this is the most important tangible challenge and opportunity
for all of basic science in this century.

But first I have a confession to make. The brain I show on this slide is a human
brain, but the opportunity before us now is to understand intelligence at the level of
the mouse. Certainly we can develop levels of intelligence higher than that, in time,
but the basic mammal brain is already enough of a challenge for now.

In recent years, we have made great progress on the “optimization” part of this. The
field of approximate and adaptive dynamic programming (ADP) has made great
strides, including some diversity of stability proofs for various designs, and some

important real-world applications. But the prediction part has not moved nearly as
well. There are major unmet opportunities. That is why I am hoping for your help
here.

On the optimization side – some of you might be interested in the many theorems
discussed on the web site of Prof. Frank Lewis, who runs the ARRI institute at the
University of Texas at Arlington. (I also posted a long paper at arxiv.org in 1998,
with some relevant results.) On the roadmap to the brain – see P.Werbos,
Intelligence in the Brain: A theory of how it works and how to build it, Neural
Networks, Volume 22, Issue 3, April 2009, Pages 200-212.
At www.werbos.com/Mind.htm, I have posted a diversity of papers ranging from the
COPN level (aiming at the mouse level of intelligence and engineering applications)
to thoughts about larger issues.

The progress in ADP all focuses on what some people call “anticipatory stochastic
optimization.” But there are still some important challenges in “static optimization,”
relevant to reverse engineering the brain. To understand this distinction – consider
a game of chess. At each move, your decision could be broken down into two parts:
(1) for each possible move, EVALUATE how good the resulting position would be for
you; (2) search through the set of possible moves to find the one which leads to the
best (maximum) evaluation score. ADP provides new methods for the first part of
the problem, the hard part. But the second part also grows in difficulty and
importance, as we scale up to brain-like complexity, and require that our algorithms
take really full advantage of the massive parallelism of the brain and of new
computer chips. The details go beyond the scope of this paper.

The right-hand slide depicts important areas where this new understanding of
brain-like intelligence could have tangible benefits to humanity. The arrow to the
earth represents the value of this new technology to challenges like sustainability of
energy and the environment, issues discussed at very great length on my web page
(e.g. www.werbos.com/energy.htm). The top arrow represents the value of this
technology to hopes for the settlement of space by humans; improved control of
jittery nonlinear systems turns out to be crucial to many new space technologies.
The lower arrow depicts the idea that more a complete understanding of mouse
brain intelligence may also help us understand the human mind better, and develop
its full potential more than we do at present.

The equation on the lower left is the chain rule for ordered derivatives, which is
widely used and often cited in this field. See http://www.werbos.com/AD2004.pdf,
published in Martin Bucker, George Corliss, Paul Hovland, Uwe Naumann & Boyana

Norris (eds), Automatic Differentiation: Applications, Theory and Implementations,

Springer (LNCS), New York, 2005.

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%234856%232009%23999779996%231108075%23FLA%23&_cdi=4856&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=77a0329061f70f6e4da1148925be6c07
http://www.werbos.com/Mind.htm
http://www.werbos.com/energy.htm
http://www.werbos.com/AD2004.pdf

We all see that the brain takes action to control muscles and glands, but our
knowledge of prediction in the brain has only recently become so concrete.
 The right side of this slide depicts some recent experiments by Nicolelis and
Chapin which, in my view, are the most important experiments in this century so far
 for the goals of COPN. They not only show that the brain possesses a kind of general
ability to learn to predict; they show exactly where it is.
 In one set of experiments, Nicolelis and Chapin began by locating cells in the
thalamus which responds to some simple, controllable stimuli – tweaking the
whiskers of a rat. Then they found some important nearby cells which do not
receive the inputs from the whiskers, but actually predict the input cells ahead of
time. When they told us about this at a workshop organized by Karl Pribram, I
suggested a follow-on experiment: why not change the pattern of stimulus or lesion
part of the circuit, so as to destroy the quality of prediction… and observe whether
the thalamo-cortical system learns to restore its prediction? They did this, and it
worked. They included this briefly in their follow-on paper in Science.
 In most research on the cerebral cortex, people talk a lot about different
areas which handle different senses. But we also know that the cortex possesses
some kind of universal learning ability (called “the principle of mass action”) which
allows one area to take over from another. I would claim that learning to predict is a
major part of that universal learning ability, which leads to the more specific
abilities. But in order to understand that learning ability, we need to understand
how this kind of thing is possible.

This slide is discussed at greater length in P.Werbos, Intelligence in the Brain: A
theory of how it works and how to build it, Neural Networks, Volume 22, Issue 3,
April 2009, Pages 200-212. (Please forgive the missing tilde and carat which belong
over the upper and lower versions of “R”.) In large parts of the computational
neuroscience field, it has become conventional to postulate “asynchronous models,”
models without any kind of clock signals – but empirical neuroscience has shown
that “clocks are everywhere” in the brain and are just as essential to the capabilities
of the brain as they are to technology. To replicate this kind of prediction with
neurons in a dish, I would guess that we would need to include four kinds of neuron
in that dish – the input thalamic cells, the predictor thalamic cells, giant pyramid
cells from the cortex, and timing cells from the nonspecific thalamus. Of course,
more cells would be needed to get the most powerful and accurate prediction, but
this would hopefully be an important start.

This slide brings us back to the core challenge we need to address here,
in mathematics and in technology. How can we design a universal system
which can learn to “predict anything,” can take advantage of massively parallel
computer hardware, and – above all – handle the huge volume of inputs that the
mammal brain can handle?

Of course, it may actually a parameterized family of universal systems, any one of
which could learn what the others could learn, if given time to catch up.

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%234856%232009%23999779996%231108075%23FLA%23&_cdi=4856&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=77a0329061f70f6e4da1148925be6c07

There are several ways to translate the larger challenge in the last slide into
something more precise and mathematical. This is one of them. The two dynamical
equations here would be very familiar to people in many fields. The most important
challenge, to begin with, is to find a way to estimate the most likely values of the
unknown functions f and h, based only on a time-series database of past values of x.
 This is not yet a complete problem statement, for two reasons: (1) We cannot
know what Pr(h,f|database) is, in principle, without a specification of prior
probabilities, as I will discuss; (2) for practical purposes, to understand the brain, it
turns out to be important to consider the more general case where x(t) may actually
be field x(t,i) or x(t,z), where i is a node in a graph or lattice and where f and h are
constrained to obey some symmetry requirements.
 The challenge of brain-like vector prediction is to perform this task well in
cases where n may be a million or so and m may be many billions
(really much more), but this system only has millions of observations in its
database. This is not the ultimate challenge of brain-like prediction, as I will discuss,
but it already goes well beyond what today’s tools offer us.

===
The full challenge of brain-like prediction requires learning in situations where the
observations appear and disappear one at a time; however, the offline version of the
challenge is difficult enough, especially when computational effort is constrained. I
do not ask for an exact calculation of the most likely f and h, but I would ask for
some degree of approximation to the optimum with some kind of bounded loss, at
least in comparison with all existing methods. When we assume the most general
and powerful priors, the grid and graph prediction challenges are actually subsets in

a way of the vector prediction task, but with simpler, “direct” priors, the vector case
is simpler.

I have been worried about this complexity issue for a long time. In 1978, I had a
unique opportunity to speak with people in the statistical advisory council of the
Census Bureau, which works hard to assemble all the top statisticians of the nation.
Of course, I will not name names, and I did not get to speak to all of the people in the
room, but I can say that one of the people I spoke to is perhaps the founder of
“information geometry.”
 I asked the same question of all the people I spoke to. Roughly: “I have heard
that someone has constructed a device which inputs a time-series of millions of
variables, sampled at a rate of about ten times per second, and learns to make major
inferences about the nonlinear relations and dynamics of these variables after x
million observations have been accumulated. My question is – what kinds of
principles would make it posisble to build something like that, and what should I
read to get a better idea of what it requires?” I was very disappointed when every
one of them said there was nothing to read , because such a device is intrinsically
impossible. I assured them there are many working models in operation, and that I
had seen proof myself that the device can actually work, but they refused to believe
me.
 Of course, this is not a commentary on these statisticians. It is a commentary
on the limitations of conventional assumptions used in the foundation of statistics.

This slide conveys my impressions of why there was such a problem in those days –
and even now!
 There were four main schools of thought in statistics. The vast majority of
statisticians belonged to one of the two schools above the line – probabilists or
maximum likelihood people. Probabilists simply did not work on these kinds of
problems of inference. Maximum likelihood statisticians mainly tried to estimate
those functions f and h which would maximize the likelihood function,
Pr(database|f,h) as shown here. That is simply not a powerful enough foundation for
the kind of ciomplexity that brains can deal with.
 In my view, the key to prediction under complexity is to exploit the
fundamental power of Bayesian induction and of robust statistics. The rest of this
talk will discuss why and how.
 In recent years, the word “Bayesian” has been used to label all kinds of things
which do not even address the vector prediction challenge. Here I am not endorsing
those things, or proposing any new speculation. I am simply saying that we need to
use Bayes’ Law as a more active starting point, in order to develop a more powerful
approach to learning, as complete as maximum likelihood analysis but more
powerful. We cannot ignore the embarrassing term Pr(f, h), the prior probabilities
term – the term which represents the probability that f and h are the true functions
which drive the system we are observing, prior to our having any database
available. We also need to unify this new approach with robust statistics, which I
will try to get to.

Good maximum likelihood statisticians have of course known about Bayes’ Law for
many years. Some have argued that we “should” assume that all models (f,g) are
equally likely apriori, because this is “more natural and more scientific.” This is

called “flat priors.” In retrospect, this is similar to the arguments used by people
who would represent neurons by linear models, on grounds that “it’s more scientific
to use a linear model, because we can prove more theorems more easily for the
linear case.” Both groups remind me of Einstein’s old dictum that we should use the
simplest possible model which works – but no simpler than that.

Just to be complete, I should also note that I was well aware back then of a variety of
“consistent estimators” described in fields like econometrics, as in the classic text of
Johnston. It was such a joy, in undergraduate days in the 1960’s, to progress from
there to maximum likelhood methods, which make it very straightforward to
calculate the exact and optimal most likely f and g, with maximum possible
efficiency both in computational cost and in taking advantage of limited data! More
precisely, we could take any parameterized family of stochastic models g(x,w),
estimate the best values of the parameters or weights w, and compare the results
with the best we could get from any other parameterized family of functions
g*(x,w). The same rigorous methods could be used for essentially any function,
including functions g(x,w) representing mathematical models of neural networks. I
continued to use such practical maximum likelihood methods in serious tasks in
econometric modeling throughout the 1980s – but used my understanding of more
advanced concepts to navigate around their limitations. For example, see P.Werbos,
Econometric Techniques: Theory Versus Practice, Energy: The International
Journal, 15 (3/4), 1990, p.213-236.

http://www.werbos.com/EIAeconometrics.pdf

This slide gives my view of what it takes to handle brain-like complexity, in vector
prediction. I will give more detail later, but for now I would like to go through all of
this carefully, to keep the picture together.
 To begin with, philosophers have known for centuries that it is not possible
to explain brain-like learning if we assume that all well-posed models are equally
likely apriori. This is why the famous Reverend Occam invented his famous Razor
centuries ago. Whenever two models fit the data of experience equally well, we
attribute higher probability to the simpler model. Pr(f,h), the prior probability,
must be greater for the simpler model, to fit or explain what we see in human
learning.
 More recently, Emmanuel Kant (Einstein’s favorite author) stated that
learning or “practical reason” requires the foundation of an “apriori synthetic”
assumption. That’s exactly what Pr(f,h) can provide. A badly constructed prior
probability distribution Pr(f,h) could prevent learning, by virtually dictating what
model (f,h) the system will believe in, regardless of data. But an “uninformative
prior” could make it possible to cope with complexity while still being open-
minded in some fundamental way.
 In the 1960’s, both Solomonoff and I came up with the same insight about
how to do this. The academic credit should go to Solomonoff, since I was not ready
to delay dissemination of the idea just in order to get credit. Please forgive that I
even mention the history.

 The key idea was that a theory (f,g) could be represented as a set of
instructions to a Turing machine. In that case, we can measure its complexity as C,
the number of symbols, and set prior probabilities according to Pr=c*exp(-kC), for
some c and k. Any learning system based on one Turing machine could then catch up
to a learning system based on any other Turing machine “in finite time,” insofar as
the code which interprets one Turing machine to another is of finite length,
providing a finite complexity penalty. (More precisely, Pr(f,h) in one machine is
bounded above k* times Pr(f,h) according to another, where k is –kC’, if C’ is the
length of the interpreter code.) Furthermore, it could catch up in finite time for any
learning machine based on instructions in any finite state machine, because of the
properties of universal Turing machines.
 In some sense, the use of the Solomonoff/Werbos prior is the answer to
problem of vector prediction in the face of complexity. Working with finite
computer hardware, we cannot possibly do better (again, if we allow finite catching
up time). There is actually a family of universal learning machines applied here, for
each choice of universal Turing machine and each choice of c and k. (There are ways
to do even better with k, but not so important to the main story here.)
 But we face two practical problems of great importance to science:

(1) Less important – could it be that the human brain is far less universal than
this? For example, since mammal brains all evolved in a 3+1-dimensional
universe, could our brains be specialized to that particular case?;

(2) More important – how do we approximate this kind of universal learning,
when we are restricted to using massively parallel computing hardware like
neural networks, and we want to be practical about how we handle
continuous as well as discrete variables?

The real challenge of brain-like vector prediction is mainly a matter of addressing
the second question here, and also accounting for robustness.
 Until 1990, I thought I had a reasonably good way to address this question.
(See the discussion of the first and second generation model of the brain, in my April
2009 paper cited above.) If our prediction models (f and g) must physically take the
form of neural circuits, biological or artificial, why not consider the general class of
such networks, with fast recurrent loops and also loops controlled by some kind of
hard-wired clock? Why not measure complexity as some kind of function of the
connection strengths, number of weights, and other obvious parameters of the
network? Why not assume a direct complexity prior, Pr(f,g)=c*exp(-kC),
based on such a direct measure of complexity C? When we insert this into our
original estimation problem, we end up minimizing the usual log likelihood measure
of maximum likelihood statistics, plus a penalty function. This still requires research
to find the right penalty functions, and some adjustment for “syncretism” (as I will
discuss), but that’s basically all. I hoped that all the rest of the complex structure and
learning which we observe in the brain could be explained as the emergent result of
this kind of learning.
 So now: I hereby define the direct vector prediction problem as the challenge
of estimating f and g, as shown in the previous slide, in the case where f and g are
sampled on the basis of this kind of direct complexity prior, or something equally

direct. (For example, if C would be a Sobolev norm of the functions f and g.) This by
itself is already an interesting and important problem, calling out for more research!
 Towards the end of this slide, I refer to a much older example of direct vector
prediction – the “empirical Bayes” method of Bard Efron, which reduces to a variety
of ridge regression. This is an important precedent, which I discuss further below.
 HOWEVER – by about 1990, I began to realize that this kind of direct vector
prediction approach would still not be powerful enough for brain-like capability.
The Turing machine has a kind of ability to define and re-use symbols, which makes
it substantially more powerful in handling spatial complexity than direct vector
prediction. After studying this and other related issues, I came up with a new theory
of what is going on here, which leads to the roadmap for prediction in the next slide:

This is the prediction side of the roadmap to the mammal brain discussed in my
April 2009 paper.
 At the present time, the two really essential (parallel) directions for research
are in direct vector prediction under complexity (symbolized by the flow chart on
the left) and in better handling of spatial complexity (symbolized by the grid). To
achieve brain-like capability in handling spatial complexity, we must build learning
systems which discover the symmetries and invariances in the world by themselves,

and embed them into other architectures; for now, however, there is a lot of
practical and intellectual benefit in starting from cases where we know the
symmetries and the graphs already. I have funded some work aimed at helping us to
make the further step to dinosaur and mouse levels of prediction, but the greater
need today is for a firmer foundation in the first two steps. I will now discuss those
two steps.

The Department of Defense and IBM have recently made claims about having
already built a computer “at the mouse level.” They have had very important success
in building computer hardware with the required level of complexity, and the ability
to simulate classical models from computational neuroscience. However, in my
view, these will not be able to replicate the capabilities I am discussing here, until
we develop the required new mathematics, and put that into the hardware.
Such a project might be called “greening the blue brain.”

Since we are very far as yet from fully solving or approximating the general
challenge of (offline) direct vector prediction, it will be useful to think of a graded
staircase of easier related problems leading up to that level.
 At the start of that staircase is the problem of static prediction, sometimes
called supervised learning. There is a huge but relatively ad hoc literature on that
problem. Some researchers just compare performance of selected real-world
databases, which can provide excitement (and sometimes extra funding), but make
it very hard to conclude anything definite. In my view, the overemphasis on ad hoc
arguments and selected tests on data mining problems has been a major factor in
delaying real progress toward brain-like capability in this area.
 Prediction competitions and tests are still a very useful stream of research,
but why not add competitions and tests focused on well-defined mathematical

systems, based on well-defined complexity priors? This would allow mutual support
between theoretical mathematical analysis of the problem and empirical results, in
parallel. Of course, it requires great care in the choice of priors, but that is part of the
research. I will make some suggestions later.

This slide illustrates why the “simple” problem of offline smooth static supervised
learning in the face of brain-like complexity is still very far from being solved as yet.
 One “obvious” approach to this task is the model-based approach, based on
maximum likelihood thinking modified only by use of a penalty function. In order to
explore the space of possible functions f, using real computer representations, we
should use a family of universal nonlinear function approximators. If our priors are
set to give us smooth functions f, then it should be good enough to use the
Multilayer Perceptron (MLP) as our approximator. Of course, there are many other
universal approximators possible, but Andrew Barron of Yale has proven that the
required complexity of an MLP grows only in a polynomial way with the number of
components in x (for a given degree of smoothness and required approximation
accuracy), while linear basis function approximators such as Taylor series and
Gaussian networks grow exponentially. In the slide above, model-based methods
can be viewed as methods which move along the rows, from left to right, in
predicting Y.
 On the other hand, Efron’s version of ridge regression gives us a strong hint
that some kind of hybrid of model-based methods with memory-based methods

might be best, in the nonlinear case as well as the linear case. More precisely, ridge
regression is often formulated as a kind of weighted sum of the usual nonlinear
regression model-based system, with a covariance based system basically the same
as some of the designs for associative memory used in neural networks. In the
extreme, many practical forecasters used precedent-based forecasting, as described
on the slide. There are many very complex kernel-based methods – more complex
methods which go “up vertically from t to T” -- which are rigorous in the sense that
they use complex mathematics to define what they do, but not why they do it, in the
fundamental terms I am looking for here.

My claim is that neither the pure model-based methods nor the pure kernel
methods are anywhere near optimal. Neither can come even close to the capabilities
of the brain in simple static smooth supervised learning, let alone anything more
complex. I see an analogy between the competition between these two methods to
the competition between extreme Republican and Democratic ideologists in the US
Congress; real progress will require help from deeper thinkers who can get beyond
it.

Before going further, I should note that everything I say here about direct vector
prediction (including citations to Efron and others) is foreshadowed in chapters 3,
10 and 13 of the Handbook on Intelligent Control (HIC). Those chapters are all
posted at http://www.werbos.com/Mind.htm#mouse.

http://www.werbos.com/Mind.htm#mouse

This slide illustrates my proposal for a hybrid between memory-based and model-
based prediction, first published in my paper in General Systems Yearbook 1977.
It is also discussed in chapter 3 of HIC.
 The basic idea is quite simple, and I am embarrassed that nothing better at a
fundamental level for general-purpose learning systems has shown up in this time.
Here I am using f* or f-tilde to represent the global neural network approximator,
and K to represent a kind of kernel function. (I have also made some obvious and
crude suggestions for how to train K.) This design is really aimed at the problem of
real-time learning, as observations come in one by one, but it also can be applied in
offline data mining. The neat thing is that it exactly fits a major part of Freud’s
theory of human learning, as I will show on the next slide.

It would be interesting to prove that this “dominates” over pure model-based and
kernel-based methods for the smooth static supervised learning problem.
“Dominated” means sometimes a lot better, and never more than some limited
penalty worse. For practical applications, it is interesting to consider what flavors of
memory system would work best as part of such a design. There are many choices.

Any truly serious model of intelligence in the brain should help us make contact
with the rich history of human experience – including some of the fundamental
insights of Sigmund Freud. Freud was sometimes distracted by some of the narrow
issues which came up in his clinical practice, but he also made important efforts to
extract fundamental principles.
 This slide illustrates one of his most important fundamental ideas. In his
view – our feelings about present life are based on a kind of interaction between
“ego” and “id.” “Id” evaluates what we see based on simple associations between
what we see now and what we saw in the past, a kind of associative memory. “Ego”
provides more of a global understanding of how things work, based on a more
rational, global understanding of cause-and-effect relations. Nervous breakdowns
commonly occur when the ego is unable to make sense of things, and the id takes
over – or else, traumatic past memories in the id suddenly rise to cause feelings and
behavior which make no sense in terms of rational cause-and-effect relations. When
this kind of id-based behavior becomes problematic, it can be reduced by
persuading the patient to relive the problematic traumatic memories and reduce
their “energy.”
 The “syncretism” model or design for learning can explain what happens in
Freud’s picture. More precisely – the f* global model corresponds to this “ego.” The
precedent-based component corresponds to id. The stored values of Y()-f*(x())
correspond to the “energy” which can be reduced when observation is revisited
with a new, more complete and mature version of f*. These particular effects do not
require a brain design more sophisticated than that of a mouse, but the human
brain does retain all the basic structural features of the mouse brain.

This slide summarizes the research needs now ahead of us, in the area of direct
vector prediction. The first bullet restates what I covered in the last few slides –
work needed to address the task of static prediction in the case where f is taken
from a probability distribution which favors smooth functions. The conjecture is
that the MLP neural network, plus syncretism, offers an effective universal learning
design for this caese.
 The next bullet describes the next step up in the stepladder of graded
problems. Instead of considering the case where Pr(f) depends on the smoothness
or Sobolev norm of f, we can consider the case where f is defined as the equilibrium
of an iterative process based on an inner function F. We can then sample functions F
based on their smoothness or Sobolev norm. This does require consideration of
various ways to handle the issue of convergence in the iterative process itself;
however, this step up is of very fundamental and inescapable importance, as we try
to get closer to brain-like capability. This more general type of prior probability also
gets us closer to the original, more universal Solomonoff/Werbos priors based on
Turing machines, which allow recursive computations. Recursive computations with
nonsmooth behavior are essential to many tasks in pattern recognition and control.
The conjecture here is that an extension of the MLP, the Simultaneous Recurrent
Network (discussed in chapter 3 of HIC), plus syncretism, gives us a universal
learning design for this more general case.
 Finally, the third bullet describes the most general case in this series. More
precisely, it refers to an extension which can be applied to either of the previous
two cases. The extension merely goes back to our earlier slide on vector prediction,

where prediction is formulated as a time-series task over a partially observed
system. The same kind of sampling can be used to define Pr(f) or Pr(f,h). The
conjecture here is that the Time-Lagged Recurrent Network (TLRN), described in
Chapter 10 of HIC, provides the universal learning design for this case.
By analogy – statisticians like Box and Jenkins and E.J. Hannan have discussed how
the vector ARMAX model is a kind of universal model for linear dynamic stochastic
processes; in a similar way, the TLRN provides a kind of universal approximator for
the NARMAX case, the nonlinear generalization of ARMAX.
 The rest of the slide notes how there is additional research to be done related
to statistical robustness and the actual speed of convergence in implementing these
methods.

The TLRN model does not explicitly represent nonGaussian noise or noise affecting
unobserved variables; however, an important paper by Feldkamp and Puskorius
(posted with permission on my web site) suggests that the minimization of square
error causes it to approximate optimal filtering as well as the best particle filtering
methods, which are far more expensive to implement and less-brain-like. For a more
explicit treatment of nonGaussian and unobserved noise, I developed a method, the
Stochastic Encoder/Decoder/Predictor (SEDP), described in Chapter 13 of HIC.
 Eduardo Sontag of Rutgers has proven many theorems important to these issues,
though I would not always interpret their significance in the same way. For example,
I am not so sanguine about the potential of rational approximators in this context,
where a large number of variables are present and so on. On the other hand, he has
proven universal approximation results for dynamic systems and recurrent
networks of enormous importance. As a possible extension, I would conjecture that
the SEDP (implemented with MLP or SRN component networks) is a kind of
universal approximator for nonlinear stochastic processes. I would conjecture that
SEDP (extended by inclusion of discrete variables and more statistical robustness)
is important to achieving “mouse brain” intelligence, but not to direct vector
prediction or to direct vector and network prediction.

In the SRN case – Ganesh Venayagamoorthy’s group has recently shown in
simulations how SRNs can learn data generated by MLPs, in general, but not vice-
versa. See Cleaver R, Venayagamoorthy GK, “Learning Functions Nonlinear with
MLPs and SRNs Trained with DEPSO”, Proc. International Joint Conference on
Neural Networks, Atlanta, GA, USA, June 14-19, IEEE, 2009. Such simulation results
could almost certainly be backed up by more general theorems. The Simultaneous
Recurrent network should not be confused with the “Simple Recurrent Network”
published later by psychologists.

This is one of a series of examples of TLRNs which have proven to have great value
in very difficult real-world prediction challenges. At one time, two Divisions of Ford
Research – one under Lee Feldkamp and one under Ken Marko – were far ahead of
the rest of the world in addressing these kinds of challenges. For example, TLRNs
were used to perform diagnostic estimation and prediction required by clean air
laws, impossible with all the older methods that anyone had ever tried on this
problem, within the cost constraints. At the International Joint Conference on Neural
Networks in Orlando in 2007, industry members of the alternate energy task force
all agreed that better understanding of how to use TLRNs was what they needed
most in hiring new students; this task force included some people (like Prokhorov)
who had received promotions by moving from the Ford group to elsewhere, and
some from other major companies. The time-lagged recurrence has many practical
benefits.

Ford has also developed a general-purpose computer package for
training TLRNs reliably over large databases. In the general time-series forecasting
competition in Orlando in 2007, organized by Sven Crone, student groups from
traditional statistics and computer science generally outperformed those using
simpler types of neural networks – but one of the folks from Ford using their
standard package got to first place with relatively little effort.

This is another example, a TLRN in use in a commercial electric power substation.

This example shows how learning-to-predict can be crucial to important challenges
in decision and control. One can build an agile robot by first learning to predict what
a human would do, and then using that as a starting point for ADP methods which
then learn to do better. Finding a good starting point is extremely important aspect
of learning, not only for robots but for humans.

This slide depicts an earlier example of learning-to-predict which still is amusing
and instructive. Leaders of the National Aerospace Program (NASP) told me and
some people I fund about how they spend a long time, and millions of dollars, to buy
a controller able to avoid crashes in simulated tests of a Mach 26 aircraft they were
trying to develop. People at Accurate Automation (AAC) in Chattanooga, Tennessee,
simply encoded this control challenge as a video game, run at speeds slow enough
that a human could try it. They distributed it for free to many people, who enjoyed
the challenge. Within just a few weeks, a couple of the testers (one an astronaut) got
a perfect score in the simulation, no matter what challenges were thrown to them.
Inside the box, the computer constructed a database of how these humans
responded to the range of input conditions. Then AAC used a simple neural network
(essentially a stripped-down TLRN) to learn to predict the human, and showed how
they had met the NASP standards very quickly at very low cost. This was the start of
a very complex and very serious story which continues to this data, with many
branches.

I did not spend any time on the slide above and the slide below at the Erdos
conference. They are taken from another talk given to people struggling with the
challenges of practical data mining. They illustrate how the fashions in data mining
today are beset by many myths and misconceptions and irrational thinking.

This slide introduces a debate which is far more serious for our purposes here. It
introduces the topic of statistical robustness, which is also essential to achieving
brain-like capability in vector prediction.
 In recent years, the work of Vapnik has become extremely popular for many
people doing prediction. His texts and papers are highly mathematical – but they
take a totally different starting point from the Bayesian approach I have described
so far.
 In Vapnik’s view – if we are training models in order to help us make money,
we should not pick the model which has the highest probability of truth in past
history. Instead, we should pick whatever model would have made us the most
money if we had used it in the past. This is the kind of foundation which underlies
his analysis which, again, is too complex to review in detail here.
 In fact, long before Vapnik, many statisticians (including Bayesians like
Raiffa) recognized that the simplified models we build on computers – even if they
contain billions of variables like the brain – are only an approximation at best of the
far more complicated world they are trying to predict. Conceptually, it is easy
enough to say that we want to pick whatever model leads to maximizing the
expected value of our utility function when we use it, but it is very unclear that
Vapnik’s heuristics or any other heuristics now in use do a good job of
approximating that ideal. A major challenge to all of us here and now is to find
better approximations, as principled as possible, unifying as much as possible of the
insights available today. I will now give a few examples.

When I started my PhD work at Harvard long ago, I began by taking a Bayesian view,
the kind of Bayesian view I have described so far. My thesis advisor, Prof. Karl
Deutsch, had previously used regression analysis to estimate a simple model he had
developed for cultural and political fluctuations across nations over time. But
regression had failed badly. I felt that a vector ARMA model should do much better,
because it is a more universal model and because (unlike simple regression) it
accounts for observation error. The chain rule for ordered derivatives made it
possible to estimate vector ARMA models much faster than in the past. All of that
worked.
 However, to really test the model, I also compared it against a simple “devil’s
advocate” model, a kind of simple extrapolation, implicitly assuming a model much
simpler than the ARMA model or the regression model. The extrapolation also
worked much better on simulated data, in cases where there was dirty noise or
such. Professor Mosteller, a pioneer in robust statistics, taught me about that
approach, and encouraged me to do these simulations.
 Because brains must also survive in a world of dirty noise and complexity, I
immediately tried to understand the underlying principles, and adjust my approach
accordingly. Of course, this was all long before I heard anything about Vapnik.

The thesis was reprinted in its entirety as part of the book shown here from Wiley.

This slide illustrates my interpretation of what I saw in this data. Conventional least
squares methods – maximum likelihood or Bayesian – basically end up minimizing a
measure of error in predicting the vector Y(t+1) as a function of data on Y(t). But the
simple extrapolation which I did is a special case of a more general method, which I
called the pure robust method. (Since then, others have called it “multiperiod error
minimization.”). The idea is to match the entire trajectory of data over time as
closely as possible to a multiperiod forecast based on the initial data, Y(1), without
the use of any other data (except exogenous variables).
 When I discussed this with students, they would immediately think of this in
a Vapnik kind of way. “Of course, if your goal is to use a model in multiperiod
forecasting, that’s what you should train it for.” But in fact, that is an incorrect and
naïve way to look at this situation, as I discussed even in my PhD thesis. For
example, notice that the fit between predictions and data in the pure robust case is
far more sensitive to the model parameters than in the conventional case; high
derivatives of error near the minimum of error implies smaller standard errors in
estimating the parameters, which implies more accuracy in all applications. When a
trajectory can be fit to the data well enough to make this true, the justification for
the pure robust method is stronger than the Vapnik approach would seem to
suggest.

Comment: if the AR or ARMA models were exactly true, it would not be possible to
fit a trajectory so well. Later, when I worked for the Energy Information
Administration, I saw many examples where backcast tests showed that models
often do stay “on trajectory” in the real world, far more than one would predict from
playing out the original regression analysis as a stochastic model.

Of course, it is not entirely trivial to implement the pure robust method for a general
class of nonlinear multivariate prediction models. This slide, taken from chapter 10
of the Handbook of Intelligent Control, illustrates how to do it in a practical way,
exploiting the chain rule for ordered derivatives.

In order to get closer to brain-like universal capability in vector prediction, I spent
years encouraging people to move up from TLRNs trained in the conventional way
to TLRNs trained by the pure robust method. This simply did not work in the
automotive sector, where TLRNs worked well enough and people saw little reason
to put in the effort to try to do a little better. However, in the world of chemical
engineering – a leading control expert, Prof. Tom McAvoy, had published papers

expressing his frustration with the limited prediction accuracy of a simple neural
network trained in the conventional way. We established a collaboration, which
demonstrated big reductions in prediction error, and extended into many
applications in the chemical sector. Chapter 10 of the Handbook contains a lengthy
description of the practical details, before the section on more fundamental, general
issues in prediction.

This slide shows the error reductions we got in the initial work, described in HIC.
The graduate student, Ted Su, went on to develop many more applications (and
better ways to initialize the estimation), in his PhD thesis under McAvoy. He then
moved to Honeywell.

Nevertheless, the pure robust method does not offer the kind of universal prediction
ability we see in the brain. Sometimes it is possible for a fixed, deterministic model
to generate a trajectory of forecasts which track the observed data. Sometimes it is
not. The slide above gives an example where the pure robust method could “almost”
give us much more accuracy than conventional methods (and where it can really do
so for short enough data series), but it goes off track and becomes very inferior as
times become longer. To develop a brain-like universal predictor, we need to find
some kind of universal hybrid between these two approaches, based on a unification
of the underlying principles of both,

This slide describes a general hybrid method which I developed and tested in 1977.
(HIC Chapter 10 develops and proposes, but does not test, a new version.) To test it,
I used a database of economies and conflict in Latin America, a database which
contains more underlying noise and unpredictability than a typical chemical plant.
 To my great disappointment, this is still the best and most principled method
I know of to this day for general-purpose learning to predict. It has not been widely
used in the neural network field, in part because the later part of chapter 10 may
have been intimidating to many engineers, and in part because the combination of
conventional TLRNs and the pure robust method usually seems good enough. To
achieve brain-like prediction capabilities, it is extremely important that we learn to
do better, and also learn to make better, fuller use of what we already have.

This slide gives one more example of a practical prediction challenge which raises
fundamental issues of statistical robustness. Value-based weights on error in
predicting different variables would also be part of a brain-like prediction system
(though they become possible only inside of a system like an ADP learning machine
which contains measures of value.).

On this slide, I finally move from the challenges of direct vector prediction to the
“next step up” – the full challenge of prediction in the face of spatial complexity.

This slide illustrates one of the two nagging issues which persuaded me, in the early
1990’s, that one cannot understand or replicate the prediction abilities of the brain
Within the confines of direct vector prediction. (The other was a paper by Albus and
Meystel, cited in my April 2009 paper in Neural Networks.)
 This slide depicts one of the great early triumphs of artificial neural
networks. A group at the US Postal Service ran a set of parallel competitions, looking
for the best possible recognizer of hand-written zip code digits. Their challenge
database was of course widely available. According to Jay Lee of that group, AT&T
and another group using essentially the same approach) were the clear winners,
performing far better than many long-established groups which had worked hard
for decades to develop understanding specialized the character recognition domain.
This group did better by simply training a standard MLP to predict the classification
from the pixel data, with conventional training based on “backpropagation” (the
chain rule for ordered derivatives). But in order to get these good results, they had
to assume and exploit translational symmetry in order to reduce the number of free
parameters in the network. This is easy to understand in statistical terms, but it
raises important questions: can we exploit symmetry effectively in a more general
setting, in training general-purpose prediction systems, even when this kind of
simple Euclidean symmetry does not apply? Just how important is this kind of
capability? How would it change the design of brain machinery or of brain-like
machinery?

This year, Yann LeCun (now at New York University) and Andrew Ng of Stanford
have demonstrated a further dramatic step forward, under funding from COPN. Still
using backpropagation, but with a different topology, LeCun has shown that he can
get 2/3 accuracy in object recognition, rather than the 1/3 achieved by the best true
learning systems in the past, on a very difficult challenge database posted at
CalTech. This puts them slightly ahead of the best classical systems using hard-
wired features developed over decades based on deep domain expertise. The
number of pixels – the complexity – is far greater in this new challenge. Their
architecture has ways of extracting discrete variables, which are complementary in
my view to the continuous strengths of SEDP. The network design used on object
recognition has also worked as well with little essential change in phoneme
recognition. Certainly this is one important source for future research in this area.
 LeCun called the earlier variation of MLPs a “conformal network.” The
impressive success of this work under COPN has led to larger scale projects at
DARPA extending the new designs to other domains.

This slide illustrates a related challenging prediction task which I first worked on in
1998 (with Pang) and later with Robert Kozma and Roman Ilin (ongoing).
 In this task, the input “vector” is actually a set of two arrays of binary
numbers, which tell us where the obstacles are and where the goal is in an N by N
maze. The desired output “vector” is an array of integers, which, on each square of
the maze, report the shortest distance from that square to the maze. The challenge is
to learn the mapping from the input to the output, based on a small set of sample
mazes. This mapping is basically too complex (nonsmooth) to be learned by a simple
convolutional MLP, or by an SRN. However, it can be learned by a “cellular SRN”
(CSRN). The CRSN is basically a unified hybrid of SRN and convolutional MLP; in
other words, it imposes translational symmetry on an SRN.
 Though Pang and I showed this by examples, we did so at a price. Even with a
reasonably tuned use of gradients, we needed tends of thousands of iterations to
reach convergence. This is an example of the tendency of ereror minimizatyoin to be
more difficult precisely for those models which have the smallest standard errors,
and thus the error surfaces of highest curvature. But in 2008, Kozma, Ilin and myself
showed how learning could be much faster on this problem by using a different
procedure for adapting parameter estimates, still using the chain rule for ordered
derivatives in order to calculate the required gradients efficiently.
 CSRNs, the chain rule for ordered derivatives and the new learning
procedure are all well-suited for direct implementation on massively parallel chips.
We expect that even faster methods for convergence can be found.

The two slides above illustrate the final project I did with Pang. We trained a CSRN
to perform the prediction task for the six easy mazes shown in the top slide. (Six is
enough, when we assume translational symmetry.) On the maze on the upper left,
the Jhat scores for each square are also typed onto the maze. Then, after training,
the CSRN was tested on the six hard mazes below. The more that training was done
on the six easy mazes, the better the performance was on the six hard mazes.

4 3 2 1 2

5 1 0 1

6 7 1 2

7 8 7 3

8 7 6 5 4

This slide really just depicts the idea of an SRN, discussed previously. For a universal
predictor of streaming video, coming into a rectangular image in a digital camera,
one would use a cellular SRN, augmented by time-lagged recurrence to account for
relations between one input frame and the next. The cellular SRN is basically just an
SRN in which the inner network is a convolutional network.

But what happens in the brain, where simple translational symmetry does not
obtain? Since 1998, I have argued that the brain relies heavily on a kind of
nonEuclidean symmetry, which I call “object symmetry.” This simply means that the
brain resolves its understanding of external reality at any time, its “world model,”
into something like a graph. The set of “objects” is learned by SEDP or an extension
of SEDP (as discussed previously), and then this set of ob jects is used in prediction
of vey complex scenes.(See my April 2009 paper in Neural Networks for more
details.). Even before we begin to implement the full model, neural networks which
implement this kind of prediction ona graph, with symmetry across objects of the
same type, has tremendous practical applications. As an example, one could use it to
learn how to predict behavior of entire electric power grids – a very complex system

– so long as one has data labelled by the usual types of objects which can be found in
a power grid. The basic CSRN, or the CSRN with edges and corners behaving
differently from other cells on the grid, are a special case of Object Net.

Not counting CSRNs, there have only been two real implementatoins of ObjectsNets
so far, in part because the training requires new algorithms. One is an application to
wide area control in simulation for electric power. The other is shown here. Both are
based on feedforward Object Nets, but even so they both led to breakthrough
performance. One of the two was the first system ever to learn how reach master-
class performance in chess, without being given prior information and rules and
features (Iloike Deep Blue). A similar design could reach master class in checkers,
when an MLP was used for position evaluation; however, only ObjectNets could do
positoin evaluation good enough to allow learning of master class performance on
chess. I conjecture that a true, recurrent Object Net would be needed to do the same
for Go.

The Center for Large-Scale Integrated Optimization and Networks at the FedEx
Institgute of Technology in the University of Memphis has a deep commitment to the
goals of COPN, and also to the broader techynology goal shown in this slide.

