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2.1. ECONOMETRIC TECHNIQUES: THEORY VERSUS PRACTICE

PAUL J. WERBOS

Energy Information Administration®
Department of Energy, Washington D.C.
US.A.

Abstract - This paper introduces the basic concepts used in econometric
modeling, and describes five prescriptions to avoid common real-world pitfalls
in that style of modeling.  The paper begins by comparing econometric
modeling with other forms of modeling used in energy modeling and
engineering. It describes what an econometric model is, and how to build one.
It then gives a detailed explanation of many facets of the five prescriptions: pay
attention to uncertainty; don’t expect a free lunch when devising specifications;
pay attention to prior information; don’t expect to draw conclusions without
adequate data; and check the historical track record of your model. The issues
of generalization and robustness over time receive special attention; they are
important in practice; and subtle in theory. Finally, the paper discusses model
development in practice, building upon experience.with PURHAPS, a model
I developed for the Energy Information Administration (EIA).

1. BACKGROUND

Economic theory, in the United States, usually begins with simplifying assumptions like free
) . markets, perfect competition, no externalities, and perfect foresight. After years of study, the
- advanced student is told how to modify this theory to address real problems in the real world,

~_which are often quite different from the theory in important ways. Some students never quite
‘ake the adjustment.

- Econometrics is very similar. This paper will introduce the novice to the basic assumptions
and methods of econometrics, and then discuss problems which come up in modifying the theory
it the real world.

- Broadly speaking, there is no sharp dividing line between econometric models, engineering
process models, statistical models, simple time-series models, systems dynamics models, etc. All
these types of models are systems of equations designed to forecast or simulate whatever we
want to forecast or simulate. The real difference lies in bow we obtain information or
Parameters to plug intg the models.

o Some classes of models tend to rely on a priori information or indirect information about
hat we are forecasting; models of this sort include "pure" process models, classical systems-

*This paper expresses the views of the author, not those of EIA or DOE, though it was
Teviewed at EIA prior to submission. As this paper goes to press, the author’s address has
changed to: Room 1151, NSF, Washington D.C. 20550.
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dynamic models and expert systems. Other classes are based on empirical data about éxactly
the kind of variables we are trying to forecast; this includes econometric models, time-series
models, statistical models, (identified) control-theory models, and artificial neural networks.

In the energy business, the a_priori models tends to be very complex, because people include
lots of lower-level detail to create a feeling of earthy realism; however, the parameters are
usually based on judgment or guessing, and it is hard to be sure the model will track actual
trends. The good empirical models tend to be simpler, because they are usually limited to
variables which are observed on a time-series basis; however, they are strongly rooted in
empirical reality, if done right.

The a priori models sometimes seem easier to understand, at first, because they mimic
concrete, well-known engineering processes (at least in part); however, because they contain so
much detail, it is not always easy to know what causes the bottom-line forecasts to come out as
they do, and the role of human behavior is often neglected or oversimplified. Empirically-based
models are the reverse: the overall behavior is easier to understand, but the detailed reasons
behind the trends -- both historically and in the forecast -- may require further analysis. A good
researcher will learn how to combine both prior information and empirical information into a
model, as this paper will discuss.

The relations between different kinds of empirical model are subtler.

On some level, there is no real difference between a statistical model, an econometric model,
and a model developed by using the identification techniques of control theory; all three rely on
the same core of theory, which this paper will discuss. "Simple time-series models" and artificial
neural networks depend on the same theory as well, but they try to automate the process of
coming up with a functional form; in effect, they assume that the user does not really understand
the structure of the system he is studying, so that a computer can do the job as well as a person.
This is a good assumption in some cases (as in recognizing patterns among thousands of variables
which no one fully assimilates into his or her intuition), and a poor assumption in others (as in
the study of physical phenomena for which the dynamics are well-understood).

2. GOALS OF THIS PAPER

In the United States and many other nations, econometrics is a major academic discipline,
based on the idea that a careful analysis of historical data can be a good starting point for
analyzing or projecting the future. Like any major discipline, econometrics has a long history,
full of false starts, new perspectives, and hundreds of applications, some good and some bad.

This paper will present those concepts and rules of thumb which we have found most
important, in practice, in a government organization concerned about the quality of its forecasts.
No one can expect to become a first-class econometrician after reading one article; there are
simply too many tricks and traps to learn. However, we will try to explain the key concepts, and
cite books which elaborate on their application. =~ We also hope to pinpoint those
misunderstandings which are common among experienced practitioners, and we apologize to them
that there is not enough space here to explain all the details. Unfortunately, these
misunderstandings have often led to the creation of models which totally misrepresent the
dynamics of the variables which they are supposed to predict.

This chapter will begin by saying what an econometric model is and how -- mechanically -
- to build one. Next, it will discuss five major prescriptions for the correct use of econometric
tools. Then it will discuss the use of these tools in practice at the Energy Information
Administration (EIA). It will conclude with a very quick overview of the PURHAPS model, one
of the econometric models I have developed for EIA.
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3. WHAT IS AN ECONOMETRIC MODEL?

Strictly speaking, an econometric mode! is no different from any other forecasting model -
- it is made up of any set of equations or formulas which can be used to predict the future. For
example, consider the following simple model to predict population:

POP(t+1) = c-POP(t) (1)

This says that population in year t+1 is equal to a constant "c" multiplied by the population in
year t. If you obtain your estimate of the constant ¢ by asking your boss what ¢ should be, or
by studying textbooks on theology or ideology, then we would call this a judgmental model. If
you obtain your estimate of ¢ from small-scale case studies of controlled populations, we might
call this an engineering model. If you have an historical time-series of data on population, for the
state or nation whose population you are forecasting, and if you estimate ¢ from that time-series
in a rigorous way, then we would call this an econometric model. In principle, then, there is no
such thing as an econometric model; there are only econometric methods for estimating
parameters such as "c" in general models. A pure econometric model is simply a general model,
in which all of the parameters have been estimated by econometric methods, based on empirical
data.

Econometric methods were initially developed for use in economic forecasting. However,
there is nothing in our discussion which will restrict their use to economics. Econometric
methods have often been applied directly to forecasting social and political systems (Werbos,
1974; Werbos, 1977; Werbos and Titus, 1978). Human minds and computers which truly imitate
human minds must also have a built-in capability to learn cause-and-effect relations by somehow
analyzing a time-series of sensory experience; we have shown how econometric methods may be
embodied directly into the wiring of such systems (Werbos, 1987a; Werbos, 1986a).

In general, people who use historical data or trends or track records to help them make
decisions are making inferences about cause and effect. Like it or not, they are engaged in a
form of statistical inference. Even if they say they are merely testing an hypothesis, or a relation,
and not formulating a model, the fact is that they are estimating a model; the potential for error
and uncertainty is merely less visible and harder to correct when they deny this fact. (Of course,
some managers would prefer to hide such uncertainties from their superiors. If a superior really
cannot understand econometrics. there is an art to using econometrics properly and then
translating the results back into English, using graphics and discussions of percentage growth rates
and historical analogues.)

4. HOW CAN AN ECONOMETRIC MODEL BE BUILT?

The first stage in building a model is to review the available data and concepts, as we will
discuss further in the section on "Practice". '

Next one must choose a computer package to work in, to implement the econometric
methods. EIA generally prefers to use the SAS package (SAS, 1985a; SAS, 1985b) on its large
computer, because of its superior flexibility and data-handling capabilities; however, Troll (1981)
has also been used, because of the sophisticated econometric tools it contains (some developed
under contract to us). On microcomputers, SAS is also available, but is relatively expensive at
present; Lotus is widely used, and new packages from Wharton Econometric Forecasting
Associates (of Philadelphia) and elsewhere may be used more in the future. We use SAS to
- estimate parameters such as "c" in equation 1, and to evaluate the overall degree of fit of
.~ equations such as 1 and alternatives to 1; then, when all the equations are estimated and

. selected, we usually program the forecasting itself in FORTRAN. Actually, SAS and Troll have
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the capability to simulate the model -- to generate forecasts - as well; we have used that
capability only rarely, because our models have usually been too big to fit into those systems.

The next step is simply to use the package chosen. To estimate equation 1, for example,
you would first locate a time-series of data on the variable POP, and load it into a SAS dataset
using the SAS command DATA (SAS, 1985a). Then you would use a SAS command such as
GLM (SAS, 1985b) to estimate “c" in equation 1, and to evaluate the error which this equation
would have led to in forecasting the past. - You could also use SAS to estimate alternative
equations, and their errors, and you could select between equations based on their error. At that
point, you have the equation, and you need only code it into a forecasting program.

The most common way to estimate a complex model, in econometrics, is to use "regression”
or "least squares.” Using regression, we estimate each equation of the model separately, one
after another. For each equation, the regression command finds those values for the parameters
which lead to the smallest possible error over the historical period you have data for. "Error"
is defined as the sum over all observations of the square of (actual minus predicted). Regression
also reports what the error is for the equation as estimated.

In actuality, most computer packages have two main regression commands available -- a
linear regression command and a nonlinear regression command. (See Wonnacott and Wonnacott,
1977, Chapters 13 and 15, for more explanation.) To avoid complications, most economists use
linear models such as the following two-equation model:

Y() = a-Y(t1) + bl-X(t) + .. + bn-X(t) + ¢ (2a)
Z(t) = cl-Y(t) + c2-Y(t-1) (2b)

In equation 2a, Y(t) is the "dependent variable" -- the variable being predicted in that equation.
Y(t-1) and X,(t) through X (t) are the independent variables of that equation.

The term "c"is the "constant term" or “intercept;" note that equation 2b has no intercept.
The parameters of the model are the constants a, bl through bn, ¢, c1 and c2. The "endogenous
variables" -- Y and Z -- are the variables being predicted somewhere in the model. Y(t-1) is a
"lagged endogenous variable" (because Y is endogenous and because t-1 represents a "lagged"
value, a previous year’s value.) X, through X, are "exogenous" because they are not endogenous.

This example is linear, because the dependent variable in every equation is predicted as a
linear combination ("weighted sum") of the independent variables, plus an optional constant term.
To estimate each equation in SAS, you need only use the linear regression command (GLM or
something similar) once for each equation. You can be sure of quick results, and you do not
have to give an initial guess for the values of the parameters. Each time, you only have to tell
SAS the name of the dependent variable and the names of the independent variables. You also
have to tell SAS whether you want a constant term in the equation, and whether you want SAS
to print out all the diagnostic statistics anyone has ever thought of.

At first glance, equation 2a may appear somewhat abstract and unrealistic. Economic
relations in the real world are often more complex. For example, even in a simple model of fuel
oil demand (QOIL) as a function of residual oil prices one would not want to use the simple
equation:

QOIL = a-PRESID + b-PDIST + c¢-DISTSHARE 3)

If you used this equation, by regressing QOIL on PRESID, PDIST, and DISTSHARE, you would

expect to find that "a" and "b" are estimated as negative numbers, expressing the idea that higher
prices lead to lower demand. However, with "a" and "b" negative, there will always exist a price

so large that demand becomes negative, which is an absurd forecast. Likewise, the effect of
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changes in PDIST should depend on how large the distillate share is; PDIST and DISTSHARE
have an "interaction effect." For these reasons, a better specification would be:

LOG(QOIL) = a + b-LOG(POIL) (4a)
POIL = PDIST -DISTSHARE + (1 - DISTSHARE) - PRESID (4b)

Equation 4a says that QOIL is a function of the weighted average price of fuel oil, POIL. It says
that a given percentage change on POIL leads to a proportionate percentage change in QOIL;
the factor of proportionality is just "b", the price elasticity of demand. (To see this, differentiate
4a or see Womnnacott and Wonnacott, 1977, Section 15-3). Equation 4a can be estimated easily
in SAS by first using a DATA step to calculate:

LOGQOIL = LOG(QOIL)
LOGPOIL = LOG(PDIST -DISTSHARE + (1 - DISTSHARE) -PRESID,

and then calling the regression command and asking it to regress LOGQOIL on LOGPOIL.
Equation 4b contains no parameters at all to estimate; it is called an "accounting identity" (as
opposed to the "behavioral equation" 4a). Equation 4a is linear in the parameters a and b, but
not in the original variables QOIL and POIL. Most econometric models are linear in the
parameters but not in the original variables. Most of them also use tricks like the above to

express economic relationships.

If equation 4a had actually been nonlinear in its parameters, then nonlinear regression could
have been used. Nonlinear regression requires a lot more care and patience, depending on what
computer package you use, but there is usually a way to make it work. Likewise, there are
alternatives to regression which would require you to estimate the entire model as a system,
together; to use these alternatives, you would have to type both equations into a single model
file or command block.

Aside form their linearity, the models in equations 2 and equations 4 have two other
simplifying features. First, they are "recursive”. In economics, this means that they are really just
simple formulas; you can calculate a forecast by plugging in values for the exogenous variables
and lagged endogenous variables, and using the equations one after another like a formula or a
recipe. Most econometric models are actually simultaneous, as in the following example:

LOG(SUPPLY) = a + b-LOG(GNP) + ¢-LOG(PRICE) (5a)
LOG(DEMAND) = d + ¢-LOG(GNP) + f-LOG(PRICE) (5b)
SUPPLY = DEMAND,

where GNP is exogenous and where the model is used to forecast a PRICE that makes SUPPLY
and DEMAND balance. to make a forecast, you cannot jus plug in GNP and PRICE on the
right-hand side; you cannot, because you don’t yet know that PRICE is. You have to solve this
system of equations, as a set of three simultaneous equations-in three unknowns. In fact, if you
insert these three equations into Troll (1981), Troll will take care of this problem and give you
a set of forecast which solve the equations.

Notice that it would be very dangerous to estimate a system like this by ordinary regression.
If SUPPLY did equal SEMAND in all historical years, then you would get exactly the same set
of parameters (d,e,f) when you use regression on 5b as you did (a,b,c) when estimating 5a; you
would not really have two different equations. Even if the equations were very slightly different,
you could not rely on what you get when you subtract one from the other (as required in solving




218 ) PAuL J. WERBOs

them). In these kinds of situations, it is important to estimate the model as a system (Wonnacott
and Wonnacott, 1977, chapter 22).

These situations arise in energy modeling, but the problem is usually not significant, mostly
because we deal with dispersed system involving lagged responses. The systems estimation
methods often lead to worse results, because e of their complexity, because the use of
instrumental variables introduces random noise, and because of problems with "robustness"
(discussed below). On the other hand, the simultaneity problem can be serious with fuels like
LPG and other minor forms of oil, whose markets are very limited and respond quickly to price;
our goal, in those cases, is to look for something like a "reduced form" model for each such fugl’
(e.g. in equations 5 first solve, to get log(Price)=g+h:-LOG(GNP), and then estimate g and h)

Even the model in equations 5 still has one further simplification: all of the variables are
assumed to be available for all historical years in you data base. (SAS will overlook a few missing
values here and there, however.) It is possible to build econometric models which do not have
this property, because they include "time-varying parameters” or "hidden variables;" however, this
is not common at present, and the tools to estimate such models are hard to come by. One can
work around this problem, to some degree; for example, if the population growth rate, "c" in
equation 1, varies over time as a function of women’s education (WED), then one might

postulate that c=a+b-WED, and rewrite equation 1 as:
POP(t+1) = a-POP(t) + b-WED(t) -POP(t) 6)

Finally, for completeness, it should be emphasized that variables in an econometric model
are not always simple time-series. Many authors will perform regressions on a data base of
different observations at the same time, such as data from different states, and then use the
results to predict the future. This is called forecasting based on cross-sectional analysis, and the
results are usually unreliable at best, both in the short-term and in the long-term. For example,
one of the first econometric equations ever studied was the classical consumption function:

Ct) = a+b-Y(1) 0

where C is national consumption and Y is national income. In cross-sectional analysis, "a" was
significantly larger than zero, and there seemed to be a large saturation effect in consumer
spending. But in time-series, "a" was quite close to zero. For purposes of forecasting changes over
time, the time-series version is the right one to use. In general, variations across space tend to
be different from variations across time, and we have seen this lead to problems over and over
again. (For example, see the discussion of "locational bias" in Werbos, 1983, Chapter 4.)

An ideal model should be able to account for variations over time and space both; however,
without data from different times, it would be foolish to assume that one has an ideal model.
Still, one can collect "pooled” data, which vary over time and space both, as we have often done
(Werbos and Titus, 1978; Werbos, 1983). To use such data in packages like SAS can be slightly
tricky, when you estimate a mode] containing lagged variables. In arranging our data (Werbos,
1983), we found it necessary to include a dummy year, 1973, to precede the years for which we
had pooled data (1974-1981), and we inserted the SAS missing value code for all 1973 data.
Observations 1 through 8 represented 1973 through 1981 in the first state, while 9 through 16
represented the second state, and so on. (Without this, the SAS "LAG" function would not have
given us valid time lags.)

5. FIVE FUNDAMENTAL PRESCRIPTIONS

This section will provide a kind of back-door introduction to the theory underlying
econometrics, by trying to explain five prescriptions for avoiding gross errors which are common
even among professionalists. '
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o Pay attention to uncertainty
o Don't expect a free lunch when choosing specifications
o Pay conscious attention to prior information
o Don’t expect to draw conclusions without adequate data

o Check the historical track record of your model (This may be the most important)

Pay Attention to Uncertainty

None of the models above -- from equation 1 to equation 7-- say anything about uncertainty.
They are all forecasting models, recipes for making base case projections. Even though there are
many different schools of thought in statistics and econometrics, they all agree that uncertainty
needs to be addressed explicitly as a central part of the analysis.

Broadly speaking, there are two major schools of thought here:

o The purist school, which has done an admirable job of simplifying and unifying our
understanding of statistical methods, and devising new and better and more elegant methods.

o The utilitarian school, which has made live complicated and tricky all over again, by focusing
on the intractable problems which occur in real-world forecasting. (This is quite different
from the quick and dirty school, which pays more attention to deadlines than to quality
problems either in theory or in the real world.)

Both schools have a great deal to contribute, but we incline towards the utilitarian school.

From the purist’s point of view, regression simply cannot estimate equation 1 as it stands,
as if it were a meaningful model of population growth. If you regress POP(t+1) on POP(t) with
no constant term, then the model you are really estimating is:

POP(t+1) = c-POP(t) + e(t) (8)

where e(t) represents a random disturbance, governed (genmerated) by a normal probability
distribution. We sometimes call e(t) "error," but statisticians like to think of it as something out
there, in the real world, rather than an "error in the sense of "mistake.". Often we call e(t) "white
noise," to make this view explicit. Equation 8 is a "stochastic model," because the assumptions
about the random disturbance have been made explicit as an integral part of the model.

When we look at the noise term explicitly, we can see immediately that there is something
implausible about the model in equation 8. Equation 8 assumes that the noise comes from the
same probability distribution in all years, implying that we should expect the same general size
range for the noise in all years. If population grows by a factor of 10 in the period under study,
this could be a very poor assumption about the noise; as a practical matter, this assumption
would lead to an estimate of "c¢" dominated by the experience of the last few years, disregarding
the earlier data. It is more plausible to expect that the noise will represent a certain percentage
of the population, and that its size range will grow in proportion to the population, as in the
model:

POP(t+1) = c-POP(t) + e(t)-POP(t) )
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In this equation, the overall noise terms -- e(t) -POP(t) -- grows in size in proportion to
population; in other words, e(t) -- which now represents noise as a fraction of the population --
still comes from a fixed probability distribution (imposing a fixed size range).

Equation 9 cannot be estimated directly in regression. However, now that we have a
complete stochastic mode, it is legitimate to divide both sides by POP(t), as we could with any
algebraic equation; this yields the equivalent model:

POP(t+1)/POP(t) = c + e(t) (10)

This can be estimated by regressing POP(t+1)/POP(t) on ng independent variables plus a
constant terms; in practice, this is just a matter of estimating the average value (mean) of
POP(t+1)/POP(t). It is more conventional, however, to use a similar but slightly more plausible
alternative to equation 9:

LOG(POP(t+1)) = ¢’ +LOG(POP(t)) + e(t) (11)
which is equivalent to:
LOG(POP(t+1))/POP(t)) = ¢’ + e(t) (12)

More generally, equations like equation 8 -- which assume a constant size range for error
when a constant size range is not plausible or does not fit the data -- are said to have a problem
with "heteroscedasticity.” This is a common problem, and algebraic transformations (like the
above) are commonly used to overcome it. Sometimes, however, algebraic transformations are
not a workable solution. For example, when the dependent variable is LOG(QOIL/QGAS), as
in the standard "logit" specification for fuel choice, there is a heteroscedasticity problem which
can only be resolved by resorting to weighted regression, which explicitly treats the size range of
e(t) as a function of other variables; the theory is given in Pindyck and Rubinfeld (1976), and
applied in the PURHAPS model (Werbos, 1983, p.12,64). (This correction would have been
desirable, but far less necessary, if we had worked with a simple time-series showing no
order-of-magnitude variations in fuel shares.) :

Besides heteroscedasticity, there are other possible problems with the theory that e(t) is
random and normal across time. For example, e(t) may be correlated with its previous value,
e(t-1). When the standard Durbin-Watson test (available in SAS and other packages) gives a
score much different from 2.0, it is conventional to use a different regression command --
regression with an autocorrelation correction -- to estimate the model under the assumption that
e(t)=r-e(t+1)+a(t), where a(t) is random; if r - the "autocorrelation parameter" -- is not
significantly different from zero, one can go back to using conventional regression.

Recently, many statisticians have begun to recommend a more careful study of the model
residuals, e(t), to see if they fit more complex "Box-Jenkins" models (Box and Jenkins, 1970). In
theory, certain classes of Box-Jenkins models can represent the idea that forecast errors result
from a combination of noise in the real world and noise in measuring what is happening in the
real world. These kinds of models can reduce forecasting errors, but tests done for real-world
multiple-equation models (Werbos, 1974; Werbos and Titus, 1978) suggest that it would be better
to focus on the long-range track record of a model, as we will describe below. (Engineers have
another way of estimating such stochastic models, but their formulation, unlike the statisticians’
formulation, contains excess parameters and can almost never be uniquely estimated.)

All of these recommendations are based on the following fundamental theorem, an

application of Bayes’ Law, which underlies all inference from empirical data (in statistics or in .
other fields):

Pr(Model|Data) = Pr(Data|Model - Pr(Model)/Pr(Data) (13)
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This states that the probability of a model being true, after we have observed a certain history
of data, is the product of three terms. One of these terms -- Pr(Data) -- is the same for all
models, and has no effect on our relative choice between models. Another -- Pr(Data/Model) -
refers to the probability that we would have observed what we did in the data if the model were
true. For stochastic models, like equations 8 through 12, this term can be calculated directly by
calculating what e(t) would be in all the years of data (assuming a given estimate of the
parameters as part of the "Model), and then using the normal probability distribution to calculate
the associated probabilities. This term is called the likelihood function; it is a function of the
parameter estimate, the model, and the data. The remaining term -- Pr(Model) -- represents the
probability that a model would be true, a priori, before any statistical data are examined.

Most purists agree that it would be unscientific to account for Pr(Model) explicitly in
statistical estimation. They argue that all possible models (and all possible sets of parameter
estimates) should be treated as equally probable a priori. They argue that modelers should always
estimate these models by finding parameter values which maximize the likelihood function. Most
existing statistical packages do in fact maximize likelihood exactly (as in regression) or
approximately (as in iterative methods which imitate the full information maximum likelihood
command for estimating systems of equations).

Bayesian statisticians have argued that economists have important information, prior to
statistical analysis, about the relative probability of different models and parameter values. We
would agree, but would argue that the economists’ information is very complex; it would be
better to use the computer to produce a complete, graphic description of the likelihood functions
-- the information found in the data -- and then count on the human being to account for his
prior information after the statistical analysis is complete. This puts a heavy burden on the
person doing the statistics, since it is not enough to just print our estimates of one final equation;
it is essential to consider the range of uncertainty for all the parameter estimates, and to consider
different ways of looking at the data.

Utilitarians (like us) go further, and argue that simple statistical models are never "true" in
any absolute sense. They argue that your choice of estimation method should depend on the
application of the estimates or forecasts. The overemphasis on definite, base case forecasts is a
product of naive decision-makers, who have yet to understand well-known procedures for coping
more honestly with uncertainty (Brown et al., 1974). Indeed, one may argue (Werbos, 1979) that
probabilities, rather than expected outcomes, should be the main focus of long-range planning
anyway; however, the efficient implementation of this principle involves many complexities
(Werbos, 1987a; Werbos, 1986a). The utilitarian Raiffa has found that elite Americans tend to
understate ranges of uncertainty by a factor of 3 or so, perhaps because they do not account for
the limitations of the assumptions they use. This suggests a need for great care in using
mathematical models built on expert judgement rather than empirical fact. Raiffa’s followers, such
as Rex Brown, have developed many techniques to train, improve and organize probability
assessment by human judgement; nevertheless, the problem of bias remains difficult and
fundamental. It is important that modelers help decision-makers think more clearly about
alternative. scenarios, rather than aggravate these biases. Even though it is very difficult to
estimate probabilities objectively -- when technological and political forces are primary sources
of uncertainty -- it should be possible to convey the nature of uncertainty in a useful way, and
explain alternative viewpoints.

Utilitarians also tend to look for estimation methods which are likely to give more accurate
forecasts even when it is hopeless to formulate a model which is "true" in an absolute sense; such
methods are called "robust estimation methods," The problem of heteroscedasticity leads to a
simple (though unconventional) example of robust estimation. Consider the simple model:

ENERGY-USE(s,t) = ¢c-PRODUCTION(s,t) + e(s,t) (14)
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where energy use is projected by state (s) and by the year (t). A purist would tell us to replace
e(s,t) by e(s,t) -PRODUCTION(s,t), and they divide by PRODUCTION(s,t) to get a regression
equation. If we do this, we are guaranteed that the percentage error in predicting energy use will
average out to zero (i.e., positive and negative errors will balance out). If we had kept equation
14 as is, we would be guaranteed that the actual error in predicting energy use will average to
zero; in other words, greater attention would be paid to bigger states. If the goal is to predict
total energy use, then the latter is preferable; it would lead to more uncertainty in our estimate
of ¢, in theory, but it would also guarantee that we are estimating that version of ¢ which is right
for our application. If we admit that equation 14 is only a simplification, then we have to accept
that the version of ¢ which minimizes one error measure will be different from the version which
minimizes another. In technical terms, there is a tradeoff here between statistical efficiency (i.e.,
random uncertainty in our estimate of c) and statistical consistency (estimating the right ).
Tradeoffs of this sort are quite common, and often require some sort of ad hoc compromise.

Don’t Expect a Free Lunch When Choosing Specifications

Choosing the equations of a model is a difficult process, whether the model is econometric,
judgmental, or engineering-based. The process is essentially the same for all three, except that
econometricians normally restrict themselves to using variables for which they have data.
Econometricians often start from a general theoretical model and translate it into its implications
for observable variables; there is no need to represent the entire mechanism by which variable
A affects variable B if the ultimate impact is represented correctly. Also, when doing
econometrics, you usually consider several alternatives, and use empirical results to decide which
version to select in the end. In fact, you typically try out new alternatives after you have studied
the results and looked for explanations of what is going on:

There are some analysts who offer you a hope of forecasting without resort to this difficult
process. They often suggest that "simple time-series analysis" or "simple econometrics” can be an
alternative to the labor and uncertainty which comes with explicit models. In actuality, this is an
illusion (though the explicit models of econometrics are simpler than most engineering models).
For example, "simple Box-Jenkins analysis" (Box and Jenkins, 1970) offers more complicated
models of noise than regression assumes; it essentially offers yet another complex correction to

explicit models (Werbos, 1974). The vendors of "simple" analysis typically apply statistical methods
to a simple forecasting model, such as:

;Y(t+1) =a+ b-Y(t), (15)

where Y is the variable you are trying to forecast. Admittedly, this model is sometimes
worthwhile. Admittedly, simple models in general tend to be more robust than complex models,
ceteris paribus. Some salesmen have suggested that this approach can be applied to electricity
demand, to save utility planners from the pain of using models which require forecasts of local
industrial growth, which are fraught with uncertainty. However, this economic uncertainty is real,
and unavoidable; a forecaster can hide the uncertainty from his clients (which does them a
disservice), but the economic uncertainties are there and will affect electricity demand. If
economic growth is known to be central to electricity demand, then it should be reflected in the
model. In general, the choice of a model should be based on a careful analysis of what is known

about the variable being modeled, and what is shown in the data; there is no magical way to
escape this process.

Forecasting problems in private industry are sometimes so complex. that analysts cannot
devise an adequate specification, even when data are plentiful. In such situations, a full-scale
"neuron network" system may be useful. The best neuron network systems (Werbos, 1987a;
Werbos, 1988; Werbos, 1989) are essentially equivalent to a massive automated search through
all possible specifications -- linear and nonlinear -- to find that specification which minimizes
some combination of forecast error and model complexity. The prior knowledge of the analyst
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is not used at all (except in the construction of the data base.) At EIA, we have yet to encounter
such situations. '

In one recent situation (IFS, 1986), we had access to a massive data base on fuel-switching
in which we didn’t know what to expect. Elaborate cross-tabulations in SAS were very useful in
helping us form hypotheses, and then formulate and estimate econometric models.

All of these examples emphasize that a modeler should take the time to devise specifications
carefully. Some students are willing to do this, but expect to be given exact rules on what kinds
of specifications to use. Once again, they are looking for a kind of fee lunch, and they can find
a few misleading papers in journals which give them the rules they are looking for. In actuality,
the choice of specification should be based on a translation of your prior knowledge (Pr(Model)
in equation 13) into mathematical equations; there is no set rule for what the equations must
look like, but there are guidelines for how to do the translation. A good econometrician should
have some familiarity with the guidelines for translation (Brown et al,, 1974; Forrester, 1961)
which have been developed for models in general. Econometricians have developed further
guidelines, but they are too numerous to cover here; still, please do consider what happens to
your model when the independent variables take on extreme values, and do consider whether the
forecasts would change the way you want them to in response to a small change in the inputs
(as a function of other inputs). Also consider whether the specification really could represent
alternative points of view (e.g. large and small price elasticities) through different parameter
estimates.

This notion of translation between human knowledge and mathematics is so vital that it
merits several examples.

First of all, translation from English into mathematics may be compared with translation
from Chinese into English. In chinese, one can make statements like "man see horse." In English,
this could mean that "a man saw a horse", or that "every man sees a horse sometime in his life",
or that "those three men are looking at a horse", or that "this man will see a lot of horses", etc.
In order to translate from chinese into English, one has to decide what tense to give the verb
"see", what number or article to put before the word "man", etc. A good translator will make
these decisions based on a careful understanding of the context in which the statement appears.
Even then, several interpretations may still make sense; in that case, the translator may go back
to the author of the Chinese statement, and ask which alternative would be used. Note that the
translator can state the alternatives to someone who only speaks Chinese; the Chinese language
permits ambiguity, but does not require it.

An irresponsible translator would not try to understand the Chinese original; instead, he
would follow a mechanical rule, such as assuming the present tense in every sentence which does
not explicitly refer to the future or the past. Irresponsible translators can easily produce
paragraphs in English which look downright-silly (as in the instruction manuals which come with
certain imported products). In translating from English into mathematics, one can produce silly
mathematics just as easily, if one is not careful about the role of time in the equations.

Second, consider a question which the Energy Modeling Forum brought up in 1985; "How
much fuel-switching has there been between oil and gas in response to prices in manufacturing?"
Two modelers came up with completely different answers to this English-language question, based
on the same set of data (Annual Survey of Manufactures) at the State level from 1974 to 1981.
One modeler (David Reister of Oak Ridge) translated the English-language question as follows:
"In any given year, was the market share of natural gas in manufacturing as a whole much
greater in those States where the gas price was a smaller fraction of the oil price?" The other
(myself) translated it as: "In any given industry, was the change in market share from one year
to the next much greater in those States and years where the change in the price ratio was also
great?" These are two different questions, and it is not surprising that they yield different
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answers. At EIA, we have tested both kinds of specifications, and were not surprised that the
latter type led to much smaller forecasting errors.

Translation back from the statistics into intuitive terms is just as important. For example, a
few years ago we reviewed a major paper on new car Miles per gallon (mpg), which developed
a model which predicted that a doubling in gasoline prices would double mpgin the future.
Working through their vehicle attribute equation, we discovered that this forecast depended on
the assumption that new cars would be eight feet tall or eight feet long in order to get higher

mpg.

Pay Conscious Attention to Prior Information

Often forecasts try to provide a "most likely" view of the future, based on all of the
information available. Historical information is only part of that information. Expert judgement,
private sector plans, and engineering information are also part of that information. In an ideal
world, we should not have to choose between econometric forecasts versus engineering forecasts,
and so on; we should develop forecasts which have the highest probability of coming true,
conditional upon all three kinds of information. In an econometric model, this can be
approximated by choosing specifications and altering parameters, where necessary, to reflect such
information.

This kind of adjustment is a tricky process. There is a risk of confusing the final user, who

may not be able to tell what comes from historical trends and what comes from adjustment. Also, -

when adjustments are made on the basis of judgments, political biases and wishful thinking easily
enter in, and cause further confusion. Adjustments based on population wisdom which in turn
depends on past history may represent a "double-counting” of history or far worse. Therefore,
there is much value in having some forecasters -- such as academics -- produce pure econometric
models and leave the discussion of other factors to their verbal discussion sections.

The Energy Modeling Forum (Werbos, 1987b) has given us some examples of how this kind
of adjustment can be done and explained to the reader. For example, if an historical trend
(reported, say, as ¢ -year in an equation to predict energy intensity) can be clearly explained as
the result of using a single technology throughout the historical period, and if we are quite sure
that a radically different technology will come on and dominate the forecast period, then an
econometric model should be adjusted to reflect our best knowledge of the new technology.
Conversely, if new technologies are expected in the future, but are numerous and hard to predict
exactly, and if there were also new technologies coming on line in the historical period, one is
better off trusting the econometric model.

Don’t Expect to Draw Conclusions Without Adequate Data

Econometric models, when estimated, make a statement about cause and effect relations. For
example, in equation 6 above, if "b" were estimated as a negative number, this would say that
increases in women;s education can reduce population growth by some amount. If b were
estimated as a positive number, it would say the reverse. In either case, the estimated value may
be a fluke, a coincidence due to a relative shortage of data. To see if this is likely, we need to
examine the "standard error" of b, which is possibly the most important statistic printed out by
standard regression programs. By and large (Wonnacott and Wonnacott, 1977), the true value of
b will be equal to the estimated value plus or minus the standard error, in seventy percent of the
cases; it will lie within two standard deviations in ninety-five percent of the cases. Old-fashioned
statisticians would say that b "is not significantly different from zero" when the value b=0 was
between these confidence limits; however, it is better simply to report what the standard errors
are, to make it clear to the reader how big b still might be (given the limitations of the data). ‘

Large standard errors may result from any of the following:
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o Lack of data. (Having four times as many independent observations cuts the standard errors
in half. However, with pooled data, the observations -- e.g., from neighboring states -- may
not be entirely independent, and the true standard errors may be larger than the reported
ones.)

‘o Lack of an adequate specification. (Cutting historical error-in half cuts standard errors in
half.) -

o Correlations between the independent variables, or "multicollinearity." (This represents a
qualitative lack of data -- a lack of data on situations where the independent values have
different values.)

Many social scientists do not appear to realize that standard errors really do account for the
effects of multicollinearity. When two independent variables do correlate very strongly with each
other, there is no magic procedure to solve the problem; an honest statistical analysis will simply
report that there is not enough data available to decide which variable has an impact on the
dependent variable. When there is strong multicollinearity (as hinted at by large standard errors),
but no really strong correlation between two variables, one should suspect three-way patterns of
correlation; to locate these kinds of patterns, one can perform an eigenvector analysis of the
correlation matrix, and look for the eigenvector whose eigenvalue is closest to zero. (Belsley, Kuh
and Welsch have discussed these kinds of diagnostics.) When there are many variables involved,
and when forecasts will be made for situations where the independent variables continue to
correlate with each other, methods like "ridge regression" may be better than ordinary regression
when muiticollinearity is suspected (Dempster et al., 1977). When a model must be estimated,
but the data are inadequate, one must generally fall back on prior information (and flag the
resulting uncertainty).

Check the Historical Track Record Of Your Model

There are many economists who test out alternative specifications, and publish whatever gets
the highest "R—squared" score as printed out by SAS. This of.en leads to disaster, because
R-squared scores are not comparable between equations which represent the dependent variable
in different ways; for example, an equation which predicts energy per unit of output will often
be more accurate than an equation which simply predicts energy, but will often have a lower
R-squared score (because the dependent variable has less variance). The situation is even worse
with complex statistical methods as used in fields like cost function estimation; there, the
"adjusted R squares” are often aggregate constructs whose relation to forecast error may be quite
tenuous.

As a first step, one can try to compare mean square error (MSE) across models, because
it is reported by SAS and is more often comparable between equations. As a second step, one
can simply use the alternative equations to predict the same basic variable (e.g., emergy
consumption), and calculate the average error; this can be done in SAS by using the "OUTPUT"
option to output the regression predictions to a file, and by using the numerous SAS utilities to
calculate the implied predictions of energy and their errors.

In practice, there is no substitute for trying to understand what is in the data, as directly as
possible. Predictions and actual values should be plotted against time, where possible, and the
differences explained. This provides a basis for going back and changing the model (or better
understanding its weaknesses). Plots like these are important both in estimating a model and in
explaining the model to others. Tukey of Princeton has written a book on Exploratory Data
Analysis, describing additional techniques for better understanding the residuals graphically.

In the past, some econometricians have routinely used "dummy variables" (1 in some years
and 0 in others) or other procedures to throw out "outliers," observations which are hard to
explain using their forecasting model. (Some statisticians have also recommended maximizing the
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1.5 power of error instead of the square error, which has much the same effect.) More recent
authors, like Belsley, Kuh and Welsch, have stressed to need to study the outliers (and other
“influential observations") rather than simply throw them out, because they may be crucial to
what your model is trying to forecast and may be important as a guide to a better model. For
example, the oil shortages of 1974 and 1979 were "outliers." but a model which ignores them is
a poor guide to reality. Again, the hard-to-explain observations should be obvious in a plot of
predictions and actuals, but more sophisticated tools exist for identifying them.

In practice, we have also found that there is no substitute for performing a "dynamic
simulation” test of a model, if you are considering the use of a model which contains a lagged’
endogenous variable. This is quite different from evaluating the "predicted values" which come
out of a standard regression command. For example, if you were estimating equation 1 over the
period from 1967 to 1985, the "predicted population” for 1980 would be calculated as "c"
multiplied by the actual population in 1979, in a regression package. In dynamic simulation, the
prediction for 1980 is calculated as "c" multiplied by the prediction for 1979, which in turn is
calculated as "c" times the prediction for 1978, and so on. The regression test would be
appropriate, in theory, if predictions one year ahead were all that you care about. The dynamic
simulation test would be better if you planned to forecast further out into the future, or if the
real concern for policy is the eventual result several years into the future.

A purist would argue very strongly that the regression test is adequate, if one has faith in
the truth of one’s model. He would argue that those lacking in faith should look for better
models. A utilitarian would argue that all models are oversimplifications, and that faith without
tests is no way to do modeling. Experience has shown that cumulative error tends to be quite
important (or even overwhelming) in models containing lagged endogenous variables, regardless
of their theoretical virtues. More to the point, it has shown that such errors can be avoided
either by specifications without lagged endogenous variables (if such can be found, with otherwise
comparable MSE scores) or by a new form of robust estimation.

An example of the former comes from our PURHAPS model: by filtering the effect of
energy prices over time, we can represent the notion of capital-embodied price responses just as
effectively as do recent academic models based on lagged dependent variables (previous period
energy intensity); however, our older version may be more robust. On the other hand, there are
many models (especially models which assess changes induced by policy) which have much higher
error levels and much crazier parameter estimates when lagged endogenous variables are not
included.

To estimate models with lagged endogenous variables, several authors -- including Larry
Kiein of Whartor, and myself (Werbos, 1974) independently -- suggested several years ago that
models could be estimated by directly picking parameters so as to minimize errors in dynamic
simulation. This could be implemented in practice by doing the dynamic simulations on a PC
package like Lotus, and adjusting the parameters by hand to minimize the error in dynamic
simulation. This form of robust estimation may be somewhat extreme; however, we have found
(Werbos and Titus, 1978; and Chapter 4 of Werbos, 1983) that it is possible to compromise
between this approach and regression, and still allow for a noise term in the model (allowing for
uncertainty). Dynamic robust estimation methods of this sort have cut errors in half in a number
of applications (where lagged endogenous variables were important), and have even done better
in short-term forecasting (Werbos, 1974; Werbos and Titus, 1978). The compromise method looks
similar to "exponential smoothing" methods which are essentially equivalent to the Box-Jenkins
methods discussed above; however, they weight the square error in different ways, and this
difference in weighing will probably be the key feature even of more advanced methods along
the same lines.

When calculating error for a system of equations, one may simply use a weighted sum of the
error for different variables (including "filtered" variables). A utilitarian would argue strongly for
doing this, and for weighing each dependent variable’s error according to the importance of that
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variable in a larger context; he would not use the classic form of full information likelihood,
which is very volatile and subject to singularity problems.

6. MODEL DEVELOPMENT IN PRACTICE

Econometric methods are used for many purposes in government and industry. Many people
use them for causal analysis, their original purpose as described above.

In my division of the Energy Information Administration (EIA), we use these methods to
build up models of energy demand by sector in the United States economy. These models are
then used as part of a larger modeling system (IFFS) which currently projects energy supply,
demand, and prices by year from 1985 to 1995. The base case projections are published in the
Annual Energy Outlook, along with a few sensitivity cases. IFFS is also used in a variety of
special studies which come up every year; for example, it may be used to predict energy demand
and supply with and without an oil import tax. EIA, like Wharton Econometric Forecasting
Associates and many other forecasting organizations, maintains both an annual and quarterly
forecasting model. The problems of publishing annual forecasts are similar in all such
organizations, where quality is a concern, and will be discussed here in general terms.

EIA has never used econometric models exclusively to generate forecasts. The goal is always
to make forecasts which represent our best guess about the future, conditional upon various
assumptions about the GNP or world oil prices. The GNP forecast is taken from an economic
forecaster, such as Data resources, Inc. The world oil price is projected by another division of
EIA, and alternative scenarios are developed to reflect the uncertainties in this projection. Our
goal is to report the best guess we can, accounting for all sources of information, including
historical data, engineering ada, the trade press, etc. In some sectors, we begin with econometric
models, and in others we begin with engineering process models; in either case, we try to inform
or calibrate the model, accounting for information from other sources.

In developing a new model, one rarely starts from scratch. There is usually an existing
model that was used in the previous year to forecast the same general concept. Generally
speaking, we go through six stages (when we have the resources to do things correctly):

o preliminary evaluation of the existing model(s)

o detailed literature review

o assessment of sources of uncertainty and how to reduce them
0 data acquisition, econometric analysis, and the like

o coding and testing

o model maintenance

Preliminary Evaluation

The preliminary evaluation usually starts from the annual review of model forecasts which
occurs as part of the annual forecasting cycle. Most reviewers have certain expectations about
what the forecast should look like, based on a variety of sources. If a forecast is much different
from these expectations, it is scrutinized further. (Unfortunately, it is more difficult to identify
poor forecasts adjusted by brute force to match common expectations; however, when there are
competing viewpoints represented in the process, based on deeply held professional or political
orientations, any forecast may be different from what someone expects. It is common to be told
within the same week, by different people, that a given elasticity is "absurdly high" and "absurdly
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low" both.) "Industry” is widely cited in. this process, but in a haphazard way and in different
directions.

Next, the analyst tries to explain why the forecast differs from expectations. Often, this
explanation involves a plot of historical data, showing how the assumptions of the model perform
compared with more popular assumptions. Simple plots and growth-rate calculations are vital to
these explanations, which take up a major part of the analyst’s time; translations back and forth
between English, statistics, and simple plots or tables are central to the process.

A critical advantage of econometric methods at this point is that they do have an historical
track record and a corresponding data base. Also, they may be simpler to understand and explain
than the process models; they do not contain large files of assumptions which can carry hidden
biases. Process models, on the other hand, can simply be adjusted to match the prior
expectations. In the past, process models were more popular than they are now, because they
could show large impacts from proposed regulations such as the Powerplant and Industrial Fuel
Use Act. Models such as the Project Independence Evaluation System have come under great
criticism for their optimism about oil imports, even though the authors worked hard to warn the
reader in the document that the conditions for zero imports by 1985 (as requested by the
policy-makers) would be very difficult to meet.

If the explanation for a forecast does not have enough information behind it, or is not
communicated properly, adjustments are made, and the issue will be studied in more detail after
the current forecasts are produced. (Econometric models can be adjusted and rerun at least as
easily as process models, but the adjustments tend to be more visible.) Likewise, questionable or
uncertain forecasts are usually revisited even if they are not initially modified. At times, a detailed
review from the Quality Assurance Division may spark a preliminary evaluation. If the
preliminary review of a model then suggests a major problem, the problem goes to the top of
the priority list. .

A great difficulty in this process is to sort out the difference between common expectations,
political or other prejudices, and objective reality. When there are many layers of analysis
between the raw data and the final publication, there is often a danger that the likelihood
function will be multiplied many times by the same prior probability distribution, therefore biasing
the publication a bit too heavily towards the priors; there is no cure for this problem other than
improved communication. .

In general, this process tends to be very instructive, but the details are rarely published; they
tend to be viewed as too technical.

Detailed Literature Review

When there are major problems with an existing mode, the model may or may not be
rewritten; that depends on the nature of the problem. The first step in reviewing the problem
is a thorough review of alternative models and forecasts, and the information behind them.
Uncertainty assessment is the next stage, but the literature review itself tries to find complete
information for that next stage; thus, an informal uncertainty analysis is always being done.

The literature review requires an evaluation of the statistical methods used in the existing
models. It requires an effort to understand what is going on, substantively, in the sector being
modeled. It requires a great deal of thought about how different phenomena, in the real world,
would influence different kinds of statistical analysis or model in different ways. (Among the

-important phenomena are things which bias different data collection efforts.) It requires

skepticism and a search for evidence when judging the statements of other modelers and of ,
“substantive experts" both. It requires a search for possible biases, as with models which make
strong assumptions about the costs of new technologies. It requires a search for widely opposing
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points of view. Above all, it requires an effort to understand why different forecasts of the same
variables from different sources come out differently.

After the literature review is largely complete, it is usually important to write a brief memo
on the issues which have emerged, and to get feedback from other analysts.

Uncertainty Assessment

The most critical stage in modeling, most often neglected, is the analysis of first-order
uncertainty. First-order uncertainties are those things which explain most of the differences
between the existing models (or potential models). It is sad how often government agencies have
spent millions of dollars on detailed, highly precise models, without checking to be sure that the
gross, first-order sources of error have been thoroughly understood.

A key part of the first-order analysis is an approach to explaining the basic, first-order trends
in past history. This includes a plan to resolve or reduce the uncertainties by statistical analysis
or by the most reliable, empirically-based methods available. After the first-order uncertainty has
been resolved, one can move on to the second-order uncertainty, and so on; at all times, no
complexity needs to be added (on the conceptual level, anyway) unless it really helps reduce the
basic uncertainties.

With behavioral effects, such as price elasticities, energy demand, or fuel-switching
sensitivities, the historical data provide a good way to estimate model parameters; econometric
techniques are appropriate. With engineering variables, such as synfuels costs, we have supported
statistical cost-calibration analysis by Ed Merrow at the RAND Corporation; early studies, taking
engineering estimates at face value, had been too optimistic. The key question about technology
is how much changes in its rate of development are likely to change trends or price responses
in the future; often, these changes introduce uncertainties both on the upside and the downside,
uncertainties which it is difficult to resolve realistically. Changes in markets are often at least as
important as changes in technologies as such.

In some cases, as with industry, the technological change has been so complex and so
continuous (on average) that we use an econometric approach almost completely (except with
petrochemicals). With transportation, a hybrid approach is used because of the unique role of
new car miles per gallon (mpg). In the residential and commercial sectors, a key problem (not
yet resolved) is to reconcile the conflicting studies which claim that conservation has mostly been
due to lower thermometers (which won’t continue when prices stabilize) or due. to structural
improvements in new buildings (which will continue as housing stocks roll over).

Uncertainty assessment cannot be done unless you know which forecast you are trying to
evaluate. At EIA, our main concern is to get the national base-case forecasts right, and to get
an accurate response to moderate price changes and economic growth. When new policy issues
arise, a new assessment is needed for the new issue; at times, this may force the development
of a new model. For example, a few years ago, when issues about contracts were considered
fundamental to natural gas regulation issues, a new model was developed which specializes in
that area; now, however, the empirical issues of base case accuracy are beginning to get more
priority again. '

According to industry representatives at the Energy Modeling Forum, private corporations
often have a special need for State-level forecasts or the like. Unexpected national trends
probably invalidate the State-level forecasts as often as any other problem does; likewise,
behavioral assumptions at the State level may be a problem. For this reason, insights developed
in national analysis may be useful to private industry. However, the forecasts themselves have
rarely been subject to uncertainty analysis at the State level, even when State-level data are
available; therefore, they are not to be taken at face value. EIA does publish regional forecasts,
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in special service reports; however, these forecasts are produced mainly because they are
important to the accuracy of the national forecasts. The regional forecasts are checked, but are
not evaluated in depth.

Analysis

The work- at this stage should follow directly from the analysis of uncertainty. Econometric
techniques are used at this stage more and more at EIA, in part because we have a comparative
advantage in using data and in part because of cost considerations. (A thorough and conclusive
analysis of even one technology is not cheap.)

Looking at models as boxes, we often ask what kind of real knowledge or information is
really "in" the box; our econometric models contain primary information about what can be
learned from history, based on the analysis stage. Because of the adjustment process, they contain
a bit of secondary information that we borrow from other sources about markets and
technologies. Good process models contain primary information about technologies, developed
at the analysis stapge; however, they are adjusted to match historical reality, and may be secondary
users of econometric information. Some hybrid models or global models tend to be secondary
users of both kinds of information.

Coding and Testing

This is straightforward conceptually; I wish it were so easy to-do. At EIA, we code our
models in FORTRAN, because even our econometric models are too complex for basic systems
like Troll to handle at present. The statistical analysis is mostly done in SAS, because SAS is
flexible and easy to use with complicated data bases; the DATA and PROC MATRIX
components of SAS are especially powerful.

Model Maintenance

The uncertainty analysis and review described above continue for all models, even after they
are established, on a regular cycle.

General Observations

After this exercise is completed, it often seems that the insights gained in modeling are more
important to policy than are the forecasts themselves, if the job was done right. Good Bayesians
know that the future is highly uncertain, and that any policy which is based on a definite
expectation of a "baseline future" is likely to be a poor policy. People at EIA and elsewhere vary
greatly in their willingness to describe and explain the full range of uncertainties, as opposed to
defending the base case or presenting a small number of conservative sensitivity cases in line with
popular expectations.

The steps needed to get good forecasts are also_needed to refine one’s understanding of
cause and effect, as I pointed out in the discussion of maximum likelihood theory above. When
cause-and-effect analysis is done outside of the forecasting context, it is often based on quick,
casual statistical models or analysis by eyeball; it often derives incorrect conclusions because it
fails to account for issues we learn about in forecasting. Unexpected futures are also important
to cause-and-effect analysis, as they are to forecasting. It is a continuous challenge for modelers
to find ways to exchange such insights and make them fully available to decision-makers.

Of EIA’s model based reports, the Short-Term Energy Outlook is often cited as the most
respected. These quarterly forecasts are based on simpler models, and are more completely

econometric than the annual forecasts are; the model assumptions and historical track record
have been communicated effectively in recent years, and there has been feedback from high
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levels of the government. The communication is more difficult for the annual model, for at least
three reasons:

o the annual model contains major process-model components (mainly on the supply side)

o the published year-ahead forecasts are not a good basis for testing track records, because
they are calibrated to the quarterly forecasts.

o the annual model makes use of more detailed data sources, some of which have been
discontinued, changed in scope, or collected at irregular intervals; while the models account
for this, it is not possible to put all the relevant information on one neat plot that goes up
to 1985

A key problem in comparing published long-term forecasts over time is to control for GNP
assumptions and world oil price assumptions. For example, optimistic assumptions about
economic growth, taken from other government components, can push up energy demand
forecasts; energy use in industry tends to be very volatile with respect to the rate of growth, and
few government forecasts ever show major recessions. EIA has published plots showing the track
record of our model in predicting world ail prices as a function of OPEC capacity utilization; the
track record has been surprisingly good, but earlier forecasts of OPEC capacity utilization led to
major errors, due in part to economic assumptions. '

7. EXAMPLE

The Purchased Heat and Power System (PURHAPS) is one of the models I have developed
at EIA, following the approach described above. The core of PURHAPS is a system to predict
purchased fuels and electricity in manufacturing in the United States, excluding refineries. This
represents only half the energy covered in our industrial sector, but there is not enough space
here to discuss all the rest. This part of PURHAPS contains good examples of the issues
discussed above. For other -- simpler -- examples of these issues, see also our Transportation
Energy Demand (TED) model (Werbos, 1986b) (which should be adjusted to reflect more recent
analysis of alternative fuels (Werbos, 1987c).

EIA management decided it needed a new model of industrial energy use early in 1982, after
several analysts in several divisions agreed that the existing model was unsatisfactory. The existing
model, a version of the Oak Ridge Industrial Model (ORIM), was driven by "econometric
equations of total energy use which had not been derived from empirical data, and which could
not be estimated very easily; the fuel-switching was driven by a "process representation” which
did not reflect differences between the different 2-digit industries, differences which seemed
critical in our reading of the literature. ISTUM2 did have an adequate process representation,
and was seriously considered for use; however, the cost of calibrating all the technology data, and
doing the historical calibration we would require for our purposes, was enough to rule it out.

The decision was made to start out, at least, with an econometric model, and add
engineering detail only when and as there was reason to do so. I proposed that we first get the
basics right, and then consider more elaborate models of primary metals, chemicals, and paper
after this point is reached. In later years, the possibility of more elaborate industry models was
considered but never seemed to promise much reduction of uncertainty at acceptable cost;
however, the system is still considering a suggestion that we buy data from SRI International
which might allow a better treatment of petrochemical feedstocks, for which the usual data
appear contradictory and problematic. (Some analysts have recommended that we model this
sector equating ethylene with petrochemicals, but the complexity and flux of this industry suggests
that this would not buy us anything better than the simple, aggregate approach we now use.)

Our initial analysis goal was two-fold:

EGY 15-3/4—G
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o To get total energy use right, at the national level, we wanted a model to track energy use
in the individual industries (for which good historical data were available back to 1958) as
well as possible.

To get fuel-switching right, we wanted a model to represent State-level tradeoffs within
specific industries. Other EIA demand models do not carry State-level detail, but it was felt
that fuel price tradeoffs vary a great deal from State to State in industry; also, the availability
of State-level data from the Annual Survey of Manufacturers was critical.

Forecasting Total Energy By Industry

Based on our initial literature review, it was felt that Dale Jorgenson’s work with Barbara
Fraumeni was the best starting place for the national energy equations. (Other work by Ernie
Berndt at MIT appeared very promising, but too difficult to update in time for the next Annual
Energy Qutlook.) Dale Jorgenson was given a small contract to update his database on the price
and quantity of capital, labor, energy, and materials used in industry through to 1979, and to
reestimate the equations he had published.

As part of our normal review process, we tested the resulting equations with Jorgenson’s own
data to see how well they would have performed in the past. The results were a great
disappointment to myself and to Jorgenson; we have published a curve or two of the errors, but
have otherwise tried to move on to something better. Some people suggested that the Jorgenson
effort had been ill-conceived; however, the purpose of scientific research is to discover new
information, as we had, and an updated database was needed in any case. '

The original Jorgenson equations had been estimated as a complete system, using a system
of constraints and estimation methods related to 3-stage least squares. We tried to reestimate
Jorgenson’s energy model, using only the energy equation and multiple regression; the errors
were less, and some people wanted to go ahead and use the results, but the price elasticities did
not make sense over time and the problem turned out to be unavoidable with the "translog"
model being used.

We then estimated a similar equation, using the same data base and still controlling for the
effects of capital prices, etc., but assuming a constant elasticity of energy prices on energy
demand per unit of production. This -worked better, and made much more sense in historical
plots. It also showed much smaller price elasticities than the theoretical economists had been
publishing in recent years (based largely on the translog or on data from 1958-74).

In the following year, we studied the residuals more carefully, and found some signs of bias.
We explained this bias as a result of "capital-embodied price responses," which represent the
effect of slow capital turnover on energy conservation; this explanation led to a much better fit,
including average errors of about 1% in all the major industries in the postembargo period. The
equation has no lagged endogenous variable to allow the possibility of cumulative error in
forecasting several years out. (The new Transportation Energy Demand (TED) model has slightly
larger errors -- 1.8% -- in forecasting total personal travel; however, because these errors are
visible in a single plot of actual travel versus predictions from 1954 to 1983, the personal travel
model is probably viewed as a bit more reliable.)

Forecasting Fuel Shares

Our analysis of fuel shares also produced a few surprises.

Coal use changed so slowly over time that we needed a nonlinear model (requiring nonlinear
regression) to track it at all. Coal use turned out to be complementary to natural gas, to a very
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slight degree; at first, we thought that this was an artifact of our equations, but we found out that
the historical fits got noticeably worse when we "corrected” the specification to cut out the
complementarity.

With electricity use, we initially used a lagged endogenous variable to represent long-term
price effects. However, we discovered that the parameter estimates were very unstable when we
changed the equations slightly, because e of "robustness" problems; we then settled on something
a little simpler.

With oil-gas switching and with electricity-fossil shifts, we predicted changes in shares as a
function of changes in prices from one year to the next. Initially, we tried a simpler version with
oil-gas switching, predicting shares as a function of prices, but a comparison of the two
approaches verified our suspicion that the simpler version would be biased. States initially varied
in fuel shares in 1974 because of differences in industrial mix which depend on other factors; an
equation based on changes assumes that different States may have different fuel shares even
when prices are equal, and it does lead to much smaller errors. (The MSE has been published
for both versions, and is several times larger for the simpler version.)

With oil-gas switching and electricity shares both, we were worried that trends might have
changed over time, or that long-term price effects might be larger than short-term price effects
(i.e., that the simple specifications might have robustness problems). To test this, we tried
specifications projecting changes in shares from 1974 and 1978 to year t as a function of price
changes over the same period; little change was found. To test the trends, we used "dummy"
variables (each set to 1 for a particular year and 0 in all others) in place of the constant term in
these equations; we found little noticeable effect with gas, but we did decide to use the average
trend over the last four years for electricity shares.

Sources of Further Information

Even the important details of this story would fill up too much of this book. For a concise
description of the model, please consult Volume I of the PURHAPS documentation (Werbos,
1984). Volume III (Werbos, 1983) gives the story and the rationale behind the initial version of
the model in much more detail (one chapter per equation). The nonmanufacturing portion of the
model has changed since then. More recent information (including updates and adjustments) is
given in a number of papers, mostly focusing on the substantive meaning of our forecasts
(Werbos, 1987b; AEQO, 1985; Werbos, 1987d).

Structure of the Manufacturing Model

The basic structure of PURHAPS is shown in Figure 1. For each of 17 manufacturing
industries, 7 econometric equations were estimated, corresponding to the 7 in the chart. Each of
the State-level equations is applied 51 different times in ever forecast year, once for each State;
the results differ across States simply because the fuel prices, industrial production, and
previous-year conditions differ across States. The State forecasts for total energy use are not
simply "shared out" from the national total; in each industry, the national equation and the 51
State equations form a system of 52 simultaneous equations, each constituting a well-thought-out
model, which are "solved" as a system.

The original Jorgenson model was a "KLEM" model, where "K" represents capital, "L" labor,
"E" energy, and "M" intermediate materials. PURHAPS may be called a "KIM/LEO" model,
because capital, materials, and time (I) are accounted for a national level, while labor, energy
and output are also used at the state level.
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Figure 1. Structure of the Manufacturing Model
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