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Presenter�
Presentation Notes�
Good morning!
I am very happy to have a chance today to help you in the IES community move faster to meet some of the important challenges in front of us. In my view, the technologies we are working on here might well decide whether the human species manages to avoid extinction in the coming decades. This is not an exaggeration; I will explain a bit today – and I hope I will help.
	The electric power area – from motors and chips to global energy economics – is a highly crossdisciplinary area in itself. Major opportunities are being lost in the world today because of the gaps in communication just within this area. In power electronics, especially, we need to understand the real needs of the customers – the world energy system – in order to anticipate and meet their needs in a more proactive way. We need to do this, in order to get ahead of the curve and not always lag behind, playing catch-up with our competitors.
	But the neural network field is also a large cross-disciplinary area, and most of what you read in the general literature is not quite correct. There are new and powerful tools now available, and there are also some pitfalls that are not heavily advertized. They apply to all kinds of “prediction” and “control” tasks, including some we think of as pattern recognition, data mining, planning, scheduling, state estimation, sensor fusion, data compression, etc., etc.
	Today, I will try to give you an overview of how these two large areas come together. Because time is limited, I won’t be able to give you all the equations you need to implement everything I talk about – but I will tell you where to look for more detail and for a few of the working examples. Most of my slides will come from two sources:
www.ieeeusa.org/policy/energy_strategy.ppt and www.eas.asu.edu/~nsfadp.
I can send you a few additional papers by email upon request.
	The energy policy slides contain text explanations. You can see the text in powerpoint by clicking on “Notes” under “View,” or printing with the “notes” option in the print options window.
  �



Sensing Comm Control

Self-Configuring
HW Modules

Coordinated
SW Service
Components

Cyberinfrastructure: The Entire Web From Cyberinfrastructure: The Entire Web From 
Sensors To Decisions/Actions/Control For Sensors To Decisions/Actions/Control For 
Max Performance, Max Performance, ““Nervous System of Global Nervous System of Global 
Economic InfrastructureEconomic Infrastructure””

Brain-like =
General-purpose,
Adaptive, 
Resilient ( ≠

 
robust),

Optimize performance
with FORESIGHT

Presenter�
Presentation Notes�
This chart really elaborates on the preceding one.
  Notice that I have added two key words: “Max Performance.”
  It is easy to develop a general-purpose controller for any complex system – so long as one does not care about performance. Likewise, ad hoc domain dependent solutions can survive well in areas where they only compete with each other, and where  maximum performance is not pursued in a deep intellectual way. Much of the literature on “agents” is limited in that way.
   It is easy even to assure stability, if one does not care about performance at all. One need only drop a bomb on the system. Then it won’t move at all.
   The real challenge here is to find general methods to maximize performance. The desire to avoid catastrophe can be incorporated into the MEASURE of performance. There is a strong technical basis for this claim: research into nonlinear robust control has shown that general nonlinear robust control problems map rigorously into optimization problems (“the Hamilton Jacobi Bellman equation.”).�



Why It is a LifeWhy It is a Life--oror--Death IssueDeath Issue

As Gas Prices ⇑
 

Imports ⇑
 

& Nuclear Tech in unstable areas 
⇑, human extinction is a serious risk. Need to move faster.

Optimal time-shifting – big boost to rapid adjustment, $

HOW?

•www.ieeeusa.org/policy/energy_strategy.ppt
•Photo credit IEEE Spectrum

Presenter�
Presentation Notes�
Rapid movement towards an intelligent grid is a life or death issue.
The IEEE talk gives much more detail on why this is. Above all, in order to accelerate the movement away from imported oil and gas, we need to expand new types of power load, like: (1) the plug-in hybrid car shown here; (2) intelligent HVAC systems which can minimize the COST of the electricity they use, by optimizing their own actions over time but also responding to real-time minute-by-minute time-of-day price signals transmitted from the grid.  
	Plug-in hybrids with 9-10 kwh battery packs have been shown to be able to cut gasoline use in half in normal life, even compared with the already reduced gas use of good hybrids like the Prius. If we could accelerate the deployment of such vehicles – they could allow North America to become totally independent of imported oil and gas, using technology available here and now. www.thunder-sky.com has announced that the price of their automotive grade 10kwh battery pack will be reduced to $2,000 each in October, 2007 – enough to make massive deployment of such vehicles rational. But of course, we also need to work on cutting costs of hybrids per se, for all manufacturers. This would require a combination of: (1) expanded research to reduce costs and enhance capability in underlying technology of power chips, control, neural chips, and motors; (2) more international cooperation – particularly with the leaders in China, Japan (e.g. NAIST, Toyota), Brazil and perhaps EC (Bosch? Infineon?); (3) greater stimulation of  production to capture economies of scale. Access to more cost-effective power electronics would also be of great value to conservation in appliances and to the US Navy.
	The batteries or rechargers of plug-in hybrids also offer an additional degree of freedom in control that could be exploited to enhance value-added further. Better timing control will be crucial to adding more loads while minimizing the need for expanding already overstressed transmission hardware. Intermittent hard-to-predict electricity sources will especially require this, to get full value (and pay them enough to get more investment). 
�
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Why It Requires Artificial Neural Why It Requires Artificial Neural 
Networks (ANNs)Networks (ANNs)

For optimal performance in the general nonlinear case 
(nonlinear control strategies, state estimators, predictors, 
etc…), we need to adaptively estimate nonlinear functions. 
Thus we must use universal nonlinear function 
approximators.
Barron (Yale) proved basic ANNs (MLP) much better than 
Taylor series, RBF, etc., to approximate smooth functions 
of many inputs. Similar theorems for approximating 
dynamic systems, etc., especially with more advanced, more 
powerful, MLP-like ANNs.
ANNs more “chip-friendly” by definition: Mosaix chips, 
CNN here today, for embedded apps, massive thruput

Presenter�
Presentation Notes�
This slide summarizes why we will need to use ANNs, sooner or later, in order to get effective large-scale performance good enough for a truly intelligent power grid. 
Andrew Barron, Chair of statistics at Yale, proved years ago that the Multilayer Perceptron (MLP), the most popular type of ANN, is far better than Taylor series and other “linear basis function approximators,” in approximating smooth functions. More precisely, he proved that the required number of weights or parameters for a given quality of approximation grows weakly as a power of the number of inputs, with MLPs, while it grows exponentially with linear basis function approximators. Furthermore, approximators like Taylor series suffer from poor “conditioning” of the “covariance matrix,” a technical problem with horrendous consequences. The number of parameters and the numerical conditioning both determine the speed at which a system can learn, and the accuracy of its learning.
  The MLP is certainly NOT the most powerful ANN approximator, but the more powerful alternatives which I discuss basically require knowledge of MLPs. Those are extensions of MLPs, more difficult to work with, but able to cope with more difficult practical computing challenges. 
ANNs are also more chip-friendly than other universal approximators – by design. I will say more about that aspect in coming slides.�



Main Goal for Neural Networks In Main Goal for Neural Networks In 
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The Brain As a Whole System 
Is an Intelligent Controller

Action

Reinforcement

Sensory Input

Presenter�
Presentation Notes�
ANNs have also been defined as “Abstract Neural Networks.” They are defined as well-specified mathematical systems designed to capture the highest kind of intelligence that we find in mammalian brains. They are designed to capture the functional capability of the system, not the precise details of what is presently known about the hardware itself.
	But how can we understand what the brain as a whole system really does? What kind of mathematics is needed, in order to express the kind of function which this information processing system performs?
	In this slide, I remind us that the brain AS A WHOLE SYSTEM is an intelligent controller. It includes pattern recognition and memory and prediction and other key capabilities as subsystems – but you can’t really understand what a subsystem is doing unless you see how it fits in as part of the larger system. Every piece of the brain has evolved so as to contribute to the function of the whole – the function of calculating decision outputs (sometimes called “squeezing and squirting”) which contribute to the long-term goals of the organism.
	Thus in order to develop an integrated, functional understanding of how the brain performs this function, we need to understand the mathematics of effective intelligent control, that really works in flexibly learning to handle wide varieties of tough control problems. 
	Many areas of technology try to teach their students a textbook of a hundred alternate methods to solve a hundred different tasks. And they often try to teach neural networks that way. But that does not do justice either to the brain or to what the neural network field is about. The brain provides a SINGLE flexible system which somehow INTEGRATES the various principles of learning and control, so that ONE system can do it all! There are still variations from brain to brain, but each individual mammal brain has a kind of universal learning ability. Mammal brains do not start out as an “empty slate” – but they are capable of relearning almost all of the specific abilities that they are normally born with. Our primary goal in ANN research is to capture that universal learning ability in designs we can implement and use.  
		 �



Where Did ANNs Come From?Where Did ANNs Come From?
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IEEE ICNN 1987: Birth of a “Unified” Discipline

Presenter�
Presentation Notes�
Many people think of ANNs as one kind of classifier system, for pattern recognition. But that is only one part of what they are.
	Back in the 1960’s, AI truly focused on the goal of trying to achieve brain-like intelligence, as such. The “perceptron movement” (including Widrow, Rosenblatt and others, inspired in part by Von Neumann!) was a kind of early neural network movement, WITHIN AI; they are the ones who tried to get started by addressing the classification problem. But, as they were unable to solve even simple classification problems like XOR, pessimism grew, and the mainstream started to view neural nets as the very worst and most unmentionable kind of taboo heresy – an “old discredited idea that could never work.” Minsky’s classic book Perceptrons became the Mainstream Official verdict on the field. Minsky’s most famous conclusion: “You can never do XOR without a multilayer training procedure; none is in sight.”
	In the early 1970’s I found a way to overcome that problem, and even offered to Minsky (and others) to collaborate on putting it forward. I learned a lot about heresy and taboos and the academic system. (See Talking Nets, MIT Press, for a small part of the story.) But eventually, the discovery of backpropagation – included in my 1974 Harvard PhD thesis, and generally cited as the original source – did get out. The simplified, popularized version in the 1986 PDP books stimulated the “birth” or “rebirth” of the neural net field more than any other event.
	But in fact – backpropagation only halfway came from the perceptron school! I first formulated it as a way to solve the reinforcement learning problem, which had been ANOTHER mainstay of mainstream AI. (That stream was also blitzed in a paper of Minsky and Selfridge, who said they couldn’t make that work either, and many people in AI still conclude that  no one could make it work on a useful scale. But as you will see, times have changed. We have found some solutions.)
	Just as important as AI to ANNs was the “Hebb” stream. One might even say that Hebb was the grandmother of ANNs, and AI the father.�



Hebb 1949: Intelligence As AnHebb 1949: Intelligence As An 
EmergentEmergent Phenomenon or Phenomenon or 

LearningLearning
“The general idea is an old one,
that any two cells or systems of 
cells that are especially active
at the same time will tend to 
become ‘associated,’ so that
activity in one facilitates
activity in the other” -- p.70
(Wiley 1961 printing)

The search for the General
Neuron Model (of Learning)

“Solves all problems”

Presenter�
Presentation Notes�
Hebb’s classic book was a great inspiration to all the mains schools of artificial neural networks – including the engineering school!
	I have seen hundreds of people excited by the New  Vision of Emergent Behavior in Complex Adaptive Systems. But in my view, Hebb’s version of that vision – back in the 1940’s – was actually far more complete and real than the new reinvented versions!!
	Hebb never claimed that ANY complex system would automatically evolve into becoming intelligent as a whole system! The universe is full of complex and dynamic but dead planets, and live but low-intelligence swamps – and some would say that the federal government is the best proof that maximum complexity does not always yield maximum intelligence. Rather, Hebb argued that the right kind of simple dynamics could allow complex intelligence to emerge. He was inspired in great part by the great experiments in neuroscience by Lashley, Freeman, Pribram and others, demonstrating “mass action” – the ability of any part of the higher brain to learn almost anything, if connections were in place. (For example, many creatures are born with edge detectors in the rear of their brain… but neurons in middle part can learn to be edge detectors if the rear part is damaged!)
	Hebb inspired a great search for a  “general neuron (learning) model” which would have the required property – the property that  a great heap of those neurons, all connected at random, could learn to do almost anything. He had an intuitive idea that this rule should reflect the idea that “behaviors are reinforced by repetition;’ the mathematical translation of that simple idea has come to be known as Hebbian learning, and is still a main foundation of computational neuroscience, both in its classical (continuous variable perceptron-like with differential equations) and “spiking neuron”  versions. �



Claim (1964) : HebbClaim (1964) : Hebb’’s s 
Approach DoesnApproach Doesn’’t Quite Work t Quite Work 

As StatedAs Stated
Hebbian Learning Rules Are All Based on 
Correlation Coefficients
Good Associative Memory: one component of the 
larger brain (Kohonen, ART, Hassoun)
Linear decorrelators and predictors
Hopfield f(u) minimizers never scaled, but:
– Gursel Serpen and SRN minimizers
– Brain-Like Stochastic Search (Needs R&D)

Presenter�
Presentation Notes�
I can remember how intensely inspired I was when reading Hebb’s book back in the summer of 1963 or 1964. I owed a paper to the University of Pennsylvania summer school in computers which I had attended the previous summer, showing how I was using computers in a summer job – and I decided to write a program implementing Hebb’s idea, and showing how it could be used on simple problems in learning in AI. I tried, very hard – but that was one course where I had an incomplete.  And I kept trying.
	In the end, I concluded that ONE kind of neuron simply could not do it – could not encompass learning the whole range of capabilities that a brain can learn. Later, Stephen Grossberg (then a young assistant professor at MIT) showed me his papers from 1969, where he COULD use Hebbian learning for an associative memory function.. And that is an important PART of brain function. But that is not the whole thing.
	In engineering applications, other than clustering, Hebbian learning methods and “Hopfield”  or Cohen-Grossberg nets have become harder and harder to find in recent years. The real reason, in my view, is that they never were able to achieve competitive performance in the larger prediction and decision-making tasks engineers have to do well on. Certainly an all-encompassing design ought to be able to replicate what linear regression can do, more or less – but Hebbian learning essentially gives correlation coefficients, not regression coefficients. (Still, some people have tried to stretch the definition of Hebbian learning  to include even backpropagation through the back door, and it is amusing to see “Hebbian” interpretations of the backwards-flowing NMDA synapses observed by Bliss etc. a few years ago,  published in Science.)   
	Strictly speaking, I think I can see a way that a general “neuron learning rule” could be constructed to cheat, to compress many  types of “neuron” into one – but it would be a mess, not like anything either nature or a good computer designer  would want.�



Understanding Brain Requires
Models Tested/Developed

Using Multiple Sources of Info
• Engineering: Will it work? Mathematics 

understandable, generic?
• Psychology: Connectionist cognitive 

science, animal learning, folk psychology
• Neuroscience: computational neuroscience
• AI: agents, games (backgammon, go), etc.
• LIS and CRI 

Presenter�
Presentation Notes�
In my (personal) view, the engineering failure of Hebbian learning by itself is a lesson of extreme importance. If we can’t achieve strong functional capabilities – general-purpose abilities to handle the broadest range of tasks – by  using Hebbian learning, what does that say about the possibility that the brain itself uses Hebbian learning by itself to achieve these learning abilities?
	In fact, Sigmund Freud argued long ago that an addition kind of information flow between neurons would be indispensable, in understanding the basic learning abilities or psychodynamics of the brain. (See Karl Pribram’s statement on the back cover of my book, The Roots of Backpropagation.) Pribram and Freeman have both reiterated often the point that today’s modeling conventions in neuroscience are simply too restrictive to be able to capture or replicate those kinds of capabilities. The brain itself is a functional system, and we need to learn more about the mathematical design of functional systems, systems which can perform real engineering tasks, before we can hope to understand what is really going on there. We need to develop new types of higher-level brain models which try to COMBNE the best of what has been learned from all of the disciplines on this chart!! Engineers have a critical role to play in making this possible, by developing the kind of designs and mathematics that will be needed for this future crossdisciplinary effort.
	Almost ten years ago, I worked with Joe Young and Andy Molnar from the psychology parts of NSF, to start up a new research funding initiative, ultimately called Learning and Intelligent Systems (LIS). I like to believe that LIS played a key role (along with the successes of ANNs) in reinvigorating the attention played to learning in many fields, especially neuroscience and AI and statistics. But it also became clear that we on the technology side have a lot of homework to do first. We need to develop and consolidate what we have learned about learning, and to cut across the disciplinary barriers which exist even within technology. In the long-term --- our ability to understand ourselves better, someday, will depend critically on this kind of tangible mathematical/engineering work.
�



Maximizing utility over timeMaximizing utility over time

Dynamic programmingDynamic programming

Model of realityModel of reality Utility function UUtility function U

Secondary, or strategic utility function JSecondary, or strategic utility function J

J (x(t)) = Max
u( t)

U (x(t), u(t)) + J (x( t + 1)) /(1 + r )

Presenter�
Presentation Notes�
Back in the 1960’s, many in AI had given up on ever developing a truly general purpose RLS system. Efforts to guess or hack or intuit a good design never got anywhere.
	But in 1967, in “Elements of Intelligence,” (Cybernetica, Namur, No. 3, 1968), I proposed that we try to use more fundamental mathematical principles to address this design problem. I proposed that we design RLS by trying to APPROXIMATE dynamic programming.
	After all, when we try to maximize the sum of U(t) over future time, we are trying to solve an optimization problem. Dynamic programming is the ONLY exact and efficient method for solving this type of problem in the general case. The “general case” means that your environment or plant could be any nonlinear stochastic system.
	This slide illustrates how dynamic programming (DP) works. The user specifies a utility function U(x); this function is simply a statement by the user of what he/she wants the control system to maximize. (It could be profit or throughput or a complex function like output minus cost minus energy use minus pollution minus wear and tear, minus tracking error. The user gets to decide what he/she wants the ultimate performance to be. The user also gets to decide whether he/she cares less about future times than the immediate present and, if so, what interest rate r fits his/her goals.) In classic DP, the user also specifies a stochastic model of how the plant works over time. These two pieces of information are then fed into the Bellman equation, illustrated in the middle box. The mathematician or engineer then tries to SOLVE the Bellman equation in this case; in other words he tries to find a function J(x) such that the Bellman equation is satisfied. The key theorem in dynamic programming is that such a J function exists almost all the time; also, the strategy of action which maximizes the expected value of future U over al future times is the same as the strategy which maximizes J(t+1). DP converts a hard problem in optimization over future times into a much easier problem in optimization one time period ahead.
	We cannot use DP proper on large problems in the real world, because we encounter a “curse of dimensionality” in solving the equation. ADP, the learning-based approximation of DP, is the answer.�



19711971--2: Emergent Intelligence Is Possible2: Emergent Intelligence Is Possible 
If We Allow Three Types of Neuron If We Allow Three Types of Neuron 

(Thesis,Roots)(Thesis,Roots)
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Action

J(t+1)

R(t+1)

u(t)

X(t)

R(t)
Red Arrows:
Derivatives
Calculated By
Generalized
Backpropagation

Presenter�
Presentation Notes�
After I gave up on ever implementing Hebb’s vision of “one neuron does it all,” I aimed for a slightly relaxed version – which actually does work, in a formal mathematical kind of sense. It actually is possible to design a general-purpose learning system out of three types or block of neurons – a system which actually can learn to converge to the optimal “strategy of action” in the general case, in some sense.
      In actuality – this mathematical design turns out to be a direct translation of ideas from Freud into mathematics. That’s where backpropagation REALLY came from. (Some of the details are in chapter 10 of my book Roots.) Backpropagation is actually a general-purpose way of calculating derivatives through any large sparse nonlinear differentiable system. In fact, some of the people I sent my thesis to renamed this an “advanced adjoint method;” their work then  led to subsequent work implementing this in actual circuits, to calculate derivatives efficiently through local calculations in real hardware.
The application to static classification is only one of many applications.
	It has taken many years for engineering practice to catch up to this level or complexity of design. It is much higher on the “ladder” of capabilities than what most people are doing even today with neural networks. I will take many slides to explain the basic ideas, and it will take further citations to explain how to implement it in detail.
	Back around 1987, I thought that the higher-level intelligence of the mammal brain might  be explained as an emergent result of something this simple underneath – more complex than Hebb’s ideas, but still in the same spirit. However, as the complexity of the sensor inputs X grow, the learning speed of this design gets slower. Recent research has extended the ladder upwards, to allow faster learning – as is needed when we try to truly integrate the management of very large systems like electric power grids!
�



Harvard Committee ResponseHarvard Committee Response

We don’t believe in neural networks – see Minsky 
(Anderson&Rosenfeld, Talking Nets)
Prove that your backwards differentiation works. 
(That is enough for a PhD thesis.) The critic/DP 
stuff published in ’77,’79,’81,’87..
Applied to affordable vector ARMA statistical 
estimation, general TSP package, and robust 
political forecasting
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Backwards Differentiation: But what kinds
of SYSTEM can we handle? See details in 
AD2004 Proceedings, Springer, in press.



Presenter�
Presentation Notes�
See previous slides. The entire Phd thesis is reprinted here.
Chapter 8 also gives a more modern update of how to use backpropagation through  time, etc. Chapter 7 gives the 1981/1982 published paper which, in my view, actually overcame the “heresy” barriers for the initial idea – and also showed how backpropagation permits intelligent control or reinforcement learning designs far more powerful than the simpler temporal difference ideas which it also discussed.
The thesis proves the validity of the “chain rule for ordered derivatives,” the most general form of backpropagation for all kinds of ordered (feedforward) systems. And it includes applications to political forecasting models and to time-series estimation.�



To Fill IN the Boxes:To Fill IN the Boxes: 
(1) NEUROCONTROL, to Fill in Critic or (1) NEUROCONTROL, to Fill in Critic or 

Action;Action; 
(2) System Identification or Prediction(2) System Identification or Prediction 
(Neuroidentification) to Fill In Model(Neuroidentification) to Fill In Model

Critic

Model

Action

J(t+1)

R(t+1)

u(t)

X(t)

R(t)
Red Arrows:
Derivatives
Calculated By
Generalized
Backpropagation

Presenter�
Presentation Notes�
When I started running the ANN area at NSF in 1988, I naturally did NOT restrict it to funding my own old ideas! But in considering these ideas, it seemed clear to me that there are two major tasks involved in trying to reach brain-like intelligence in future large ANN designs: (1) the “control” or decision-making task, which defines the overall system; and (2) the task of learning the dynamics (“Model”) of the environment or plant. Thus I would still see learning-to-predict and learning-to-decide(“control”) as the two main divisions of research needed to fulfill our goals. They are the two pillars of the ANN field. Areas like clustering and associative memory are important PIECES of these larger areas, when they are designed to contribute to the larger goals or systems.
�



Dual Heuristic Programming Dual Heuristic Programming 
(DHP)(DHP)

CriticCritic

ModelModel UtilityUtility

ActionAction

R(t+1) λ(t+1)=∂J(t+1)/∂R(t+1)

R(t)
Target=λ*(t)

Presenter�
Presentation Notes�
This is “level four” of ordinary adaptive critic designs.
On the previous slide, you may have noticed that we never really use J directly there. So why calculate J, when we only need to calculate the derivatives of J with respect to components of the vector R? In fact, this slide illustrates a way of doing that.
Again, see HIC and HLADP for more details. Here I will just touch on a few key points.
Here, unlike HDP, the critic has many outputs. This means that the critic receives a lot of feedback in every time period, for its training. This means that it should have more and more advantage in learning faster than HDP, as the number of state variables grows. I developed DHP long ago as a way to overcome the obvious scaling problem with HDP. A benchmark comparison by Wunsch and Prokhorov, published in Neural Networks a few years back, shows that DHP generally performs better than HDP – and just as well as GDHP, a more complicated (“level 5”) method I also developed.
Most of the best successes in real-world control problems using adaptive critics have been based on DHP, in recent years. HLADP gives many examples. 
The outputs of a DHP critic actually have very deep connections to other intellectual fields. Some economists may wonder: “Are these lambdas related to Lagrange multipliers or price signals?” Indeed, they are – exactly. They are the generalization to the stochastic case of those older ideas.
The core equations of DHP are a stochastic generalization of the Pontryagin equation – discussed, again, in HLADP and HIC.
This leads to an interesting design possibility. A global critic, based on DHP, can be used to output the value signals or price signals used to manage lower-level controllers or agents in a truly optimal distributed multi-agent system. This is far superior to some of the totally ad hoc multiagent designs one finds in current literature. But to construct such a global critic requires the use of designs very high up on our tree; a simple MLP would not be powerful enough, let alone linear basis function nets!!!
 �



NSF/McAir Workshop 1990 

White and Sofge eds, Van Nostrand, 1992

Presenter�
Presentation Notes�
The success of the previous workshop led to a follow-on workshop in 1990, jointly sponsored by NSF and McDonnell-Douglas. The resulting book,  the Handbook of Intelligent Control, is still the most advanced source now available for many of the key technologies and capabilities to be discussed here. It has served as a kind of “Bible” for my program, and has important details of implementation.
	Many of the new advancements since then have appeared only as papers of various sorts. However, there is a new Handbook of Learning and Approximate Dynamic Programming in press from Wiley and IEEE Press (see www.eas.asu.edu/~nsfadp) which substantially updates and elaborates many of the core themes of the Handbook. I will refer often to the old Handbook (HIC) and the new Handbook (HLADP) from here on.�



11stst Generation Theory of Mammal BrainGeneration Theory of Mammal Brain
As in 71-72 proposal, brain has 3 main parts: 
– Cortex+thalamus: Model to predict/impute reality. See Nicolelis&Chapin, 

Science, rat whisker work.
– Limbic system: Critic gives “emotional” assessment of what Freud called 

“objects” (Papez, James Olds)
– Brain-stem: action or “motor” system (and inherited fixed 

preprocessors/postprocessors)
– Clock signals from extracortical sources (Foote, Llinas)
– Backprop unavoidable. (Bliss, Spruston, Sejnowski)

Technical level improvements and big runs enough to span gap 
form 1971-72 to mammal brain:
– Fill in “Model” with hybrid Simultaneous/Time-Lagged Recurrent Network 

trained by Error Critic (fully specified in Handbook of Intelligent Control)
– Critic is sum of multiple “HDP” components each trained by GDHP, which 

gives power of DHP for continuous variables but handles 
continuous/discrete mix.

– In each box, faster learning, per robust statistics, learning from memory, etc. 
BUT IS IT ENOUGH? For what?



Neural Networks That Actually Work In Neural Networks That Actually Work In 
Diagnostics, Prediction & Control: Common Diagnostics, Prediction & Control: Common 

Misconceptions Vs. RealMisconceptions Vs. Real--World SuccessWorld Success 
(excerpts from tutorial at (excerpts from tutorial at www.werbos.comwww.werbos.com) ) 

Neural Nets, A Route to Learning/Intelligence
– goals, history, basic concepts, consciousness

State of the Art -- Working Tools Vs. Toys and 
Fads
– static prediction/classification
– dynamic prediction/classification
– control: cloning experts, tracking, optimization

Advanced Brain-Like Capabilities & Grids

Presenter�
Presentation Notes�
ABSTRACT:Neural nets are used in a growing variety of real-world applications, in a growing number of areas (including the modeling of natural intelligence). But this has been a mixed blessing, as various subcultures have not kept up with each other. For example, at http://www.eas.asu.edu/~nsfadp/ applications�of adaptive dynamic programming (aka advanced reinforcement learning) are reported which beat the previous best performance in electric power grid control, aircraft control, in large-scale logistics, etc. -- but best performance requires integrating concepts from many subcultures. Yet in some subcultures, people are still using "mappings from sensory to motor coordinates" (direct adaptive control), whose limits were clear years ago. Some are using indirect methods inspired by control theory with well-known stability theorems -- theorems whose conditions are rarely satisfied, and methods which are easily improved upon. Similarly, in prediction, some subcultures falsely believe that recurrent networks are hard to train and of marginal benefit, even as people in industry use them routinely, and report performance better than extended Kalman filters and equal (at lower cost) to elaborate particle filter methods. The foundations of learning also bear on the practical choices. This tutorial will try to offer a kind of practical roadmap of these issues, and suggest how it points towards future functionality in tasks as large-scale as what brains can handle.
---------------------------------------------------------------------------------------------------------------------------
As neural networks have been used in more and more fields, more and more courses have been taught from the viewpoint of other fields, such as AI, statistics, biology or control theory. This is good in a way, but it often doesn’t tell people what the neural network field is really about.  This tutorial will begin by discussing the core vision of the neural network field, which is still a revolutionary new paradigm and has yet to achieve full understanding from the mainstream. It will then go into depth into the best state-of-the-art tools  for predictions (including diagnostics) and control or decision-making or management of large systems – including a discussion of the pathway for how to get to systems which replicate the kind of higher-level intelligence we see in mammalians brains.
    	Some related slides (with Notes) are posted at www.eas.asu.edu/~nsfadp and at www.iamcm.org/~publications, and various URLS herein. Please forgive the informality of these notes, which reflect no official views and are tentative, oversimplified, etc.�



3 Types of Diagnostic System3 Types of Diagnostic System

All 3 train predictors, use sensor data X(t),                  
other data u(t), fault classifications F1 to Fm

Type 1: predict Fi(t) from X(t), u(t), MEMORY
Others: first train to predict X(t+1) from X,u,MEM
– Type 2: when actual X(t+1) 6σ

 
from prediction, ALARM

– Type 3: if prediction net predicts BAD X(t+T), ALARM
Combination best. See PJW in Maren, ed, Handbook 
Neural Computing Apps, Academic, 1990.

Presenter�
Presentation Notes�
This is my one slide on diagnostics!

Diagnostics are extremely important in engineering. But the neural network methods useful in diagnostics all  boil down to methods for prediction.
This slide describes the three main ways that general-purpose prediction tools can be used as part of a fault diagnosis system. There are many applications out there in the field, and I will say much about the art of how to apply prediction methods well for diagnosis. The book edited by Maren (Academic Press, 1990) does contain a lot of practical discussion of how such systems can be set up. In this tutorial, I will discuss how to do prediction better, which is important to all of these uses of prediction.

I do have a couple of advanced suggestions, however. For optimal detection of “novelty events” (X(t+1) very different from trained predictor)… it is usually best to first train a TLRN predictor network robustly, as I will discuss below. And then the ERRORS and the recurrent nodes, or just the sensed data and recurrent nodes, can be plotted using one of Kohonen’s self-organizing maps. Either system alone has worked well in diagnostics, but the combination should work better. Alternatively, Principe’s new learning rule based on comparing pairs of observations could be used, perhaps to replace the SOM part.�



Supervised Learning Systems (SLS)

SLS
u(t)
inputs

Predicted X(t)
outputs

Actual X(t)
targets

SLS may have internal dynamics but 
no “memory” of times t-1, t-2...

Presenter�
Presentation Notes�
The term “supervised learning” is very precisely defined now. Supervised learning refers to the general task of trying to learn the mapping from a vector (or set) of inputs to a vector (or set) of desired outputs, based on previous examples of inputs and desired outputs. The idea is to learn the mapping based on a past history or database or “training set” of examples. The idea is to learn the mapping IN SUCH A WAY that the future predictions are likely to be good predictions of the actual or desired value, IN THE FUTURE, for new input vectors X not seen in the training set. (This is called “good generalization.”) 
	Some people in AI now call this “learning from examples,” but we should not use that term because it is very ambiguous.
	If the desired outputs are binary or discrete, we call this a static classification task. That is a special case of supervised learning.
	Normally, the learning system contains parameters or weights W which we keep changing, in order to make the predictions fit the actual data better and better. Sometimes we examine the observations one-by-one, and change the weights based on observation-by-observation learning; this can be done in an offline simulation, as a way of training an engineering system that will be fixed in its operation. Sometimes it is true real-time “on the fly” learning. Sometimes we wait until we cycle through an entire training set in a “batch,” and only then update the weights, in “batch learning.” All have their place in engineering. The brain seems to be a real-time learning system – but that actually turns out to be an oversimplification!
	Universal supervised learning is a hard enough challenge by itself for today’s research! ANNs, statistics, AI, philosophy, psychology, etc., all have important contributions to make in helping us achieve more brain-like capability even in this “narrow” task. This task is a kind of subset or starting point for the more general dynamic prediction that the brain or an intelligent controller needs to perform.�



BrainBrain--Style Prediction Is NOT Style Prediction Is NOT 
Just TimeJust Time--Series Statistics!Series Statistics!

One System does it all -- not just a collection 
of chapters or methods
Domain-specific info is 2-edged sword:
– need to use it; need to be able to do without it
Neural Nets demand/inspire new work on 
general-purpose prior probabilities and on 
dynamic robustness (See HIC chapter 10)
SEDP&Kohonen: general nonlinear 
stochastic ID of partially observed systems

Presenter�
Presentation Notes�
I have said enough for now about the “ladder” of neural network structures for supervised learning. To summarize – there are simple designs which work well enough on simple tasks, and more powerful designs which work on the simple tasks but also on more general kinds of tasks. 
	Some statisticians have argued that “neural networks are just a branch of statistics.” Textbooks are sometimes written which contain dozens of methods which are essentially just a choice of canned topologies. The user is sometimes urged to remember the “law of no free lunch;” the idea is that different methods work on different problems, that there is no universally better method, and that serious people always operate by studying the specific domain problem, picking a chapter, and developing expertise relevant only to that narrow domain. General purpose competence is impossible. Thus to build robots for space application, we may identify 2,000 standard tasks, and propose that NASA fund 2,000 back-to-back 3 years studies to develop specialized methods for each of the tasks. Some theorists call this “practical.” 
	The “law of no free lunch” (as normally interpreted) is only HALF true. It is true that statisticians have the right to complain when a person tries out tweak number 166 on one narrow test problem, and draws universal conclusions from one example. But is possible, for example, for the domain of competency of  one topology to be subset of another, more universal topology; that’s what the Turing theorem is all about, and the capabilities of Object Nets are closely related to Turing concepts. 
	But in the end, as I described before, we cannot escape from the issue of analyzing the prior assumptions like smoothness, symmetry and robustness which make it possible to develop universal brain-like capabilities. That research challenge is at the core of the neural network field, and we have already learned a lot that goes well beyond what classical maximum likelihood statistics can do.
�



F(t-3)             F(t-2)             F(t-1)            pH(t-3)         pH(t-2)         pH(t-1)

pH(t)

Example of TDNN used in HIC, Chapter 10
TDNNs learn NARX or FIR Models, not NARMAX or IIR

Presenter�
Presentation Notes�
This slide is an example of how people have used neural networks in the past to do prediction over time, in chemical engineering. Basically, we convert a problem of prediction over time into a simple supervised learning task. We define the INPUTS to the SLS as the observations (pH) and decisions (F) over the last three time-periods, and then try to predict the current pH level as the desired output. When we use a static input-output neural network to make predictions over time, by “lagging” or “delaying” the inputs like this, it is called a “Time-Delay Neural Network.” (TDNN). 
	In this example, the circles and arrows basically indicate WHAT KIND of static input-output network we used here. We used a three-layer “Multilayer Perceptron” (MLP), the most common ANN across all engineering applications. Some people call it a “backpropagation network,” but that is very confusing terminology, since MLPs were used back in the 1960s (before backpropagation even existed!), and also because backpropagation has been used on much wider classes of networks. (Some people like to use confusing terminology because it gives them a chance to invent dozens of new names for the same algorithm.) See www.iamcm.org (publications) or my book for the equations of the MLP; in essence, each circle represents a two-step computation – a weighted sum v followed by calculating tanh(v). The weights and intercept of the weighted sum form the weights to be trained or tuned.
	If we want to do prediction by using simple TDNNs, we face two decisions:
Should we really use an MLP, or should we use some other static architecture?; and (2) how should be train or tune the weights? The next slides address that. �



Generalized MLPGeneralized MLP

0 1 m m+1 N N+1 N+n

Inputs Outputs

1          x1 xm Y1 Yn

Presenter�
Presentation Notes�
Based on the important theorems of Andrew Barron, many now believe that the MLP is a kind of practical, well-scaling universal approximation machine. When the task is to learn smooth functions of many inputs, it is clearly better than the ever-popular linear basis function methods (which include the easier local networks, Taylor series, and feature-based classification and its “new” kernel function versions). Not all functions are smooth – but don’t we have to make SOME realistic assumptions like smoothness in order to have any hope at all in learning?
	In fact – it is extremely important to basic research to reconsider – what DO we have to assume in order to make learning possible at all? What are the minimum apriori assumptions we have to make – or the most general class of worlds we can really learn to adapt to – consistent with learning? One key difference between the field of statistics and the field of neural networks is that we absolutely MUST face up to this question, in order to have any hope of explaining how the brain copes with so many millions of input variables. We must face up to the kinds of questions which philosophers like Emmanuel Kant wrestled with – which turn out to be critical to performance in real-world applications like image processing, where Germans trained in Kant have in fact achieved outstanding performance!
	It turns out that many of the functions which the brain needs to learn, in order to survive in our world, are well beyond what MLPs can learn!! Intuitively, these are applications where there are many inputs that tend to have a kind of entangled sort of interrelation.					The GMLP (above) is the most general, all-inclusive topology available for feedforward networks made up of the usual simple “sigmoidal” (e.g. tanh) neurons. It is an example of a universal design for what it does; ANY feedforward topology made up of sigmoidal neurons is just a special case of a GMLP, a special case in which some of the weights may be “cut” (fixed to zero). At the IJCNN1999, in the session led by Pribram, Russian mathematicians showed how such architectures give more general function approximation capabilities than MLPs. See www.iamcm.org for equations, etc. – and some discussion of the well-known issues of pruning and penalty functions important to optimal performance in ALL global feedforward networks. (Penalty function tools should also be in good ANN packages, to address the well-known “overfitting” problem, which I will discuss further.)
�



No feedforward or associative No feedforward or associative 
memory net can give brainmemory net can give brain--likelike 

performance! Useful performance! Useful 
recurrencerecurrence----

For short-term memory, for state estimation, 
for fast adaptation – time-lagged recurrence
needed. (TLRN = time-lagged recurrent net)
For better Y=F(X,W) mapping, Simultaneous
Recurrent Networks Needed. For large-scale 
tasks, SRNs WITH SYMMETRY tricks 
needed – cellular SRN, Object Nets
For robustness over time, “recurrent training”

Presenter�
Presentation Notes�
In the next slides I will try to explain why recurrent networks are essential to good real-world performance in prediction in most applications.
In fact, a kind of “recurrent training” (which some people call “external recurrence”) is necessary for best performance even when you use simple time-delay MLPs for prediction!

Fortunately, recurrent networks are also much easier to train and use (except for SRNs and ObjectNets) than most people seem to believe. For example, Mo-Yuen Chow in the IES community has shown many excellent applications of TLRNs trained by true backpropagation through time. However – the literature in psychology, and easy-access software based on that literature, can be very confusing on this score. I will try to point towards more workable sources here.�



Why TLRNs Vital in Prediction: Why TLRNs Vital in Prediction: 
Correlation Correlation ≠≠

 
Causality!Causality!

E.g.: law X sends extra $ to schools with low test 
scores
Does negative correlation of $ with test scores 
imply X is a bad program? No! Under such a law, 
negative correlation is hard-wired. Low test scores 
cause $ to be there! No evidence + or – re the 
program effect!
Solution: compare $ at time t with performance 
changes from t to t+1! More generally/accurately: 
train dynamic model/network – essential to any 
useful information about causation or for decision!

Presenter�
Presentation Notes�
One reason why we need TLRNs instead of simple static networks is shown in this slide.
First-year graduate statistics courses are supposed to teach students why correlation is NOTHING LIKE a way to measure causation!! Yet somehow there are entire communities out there who seem to have forgotten this fundamental lesson. There exist truly enormous elaborate and pompous systems for making complex inferences from data – whose results are utterly worthless because they do not really measure what matters – dynamics. 
When I worked at the US Department of Energy, I saw many cases where a single equation model properly trained or estimated to data could predict far better than elaborate expensive models based on a mediocre treatment of dynamics attached to enormous detailed data… �



The TimeThe Time--Lagged Lagged 
Recurrent Network (TLRN)Recurrent Network (TLRN)

Any Static Network

z-1

X(t)

R(t-1)

Y(t)

R(t-1)

Y(t)=f(X(t), R(t-1)); R(t)=g(X(t), R(t-1))
f and g represent 2 outputs of one network
All-encompassing, NARMAX(1 ≡

 
n)

Felkamp/Prokhorov Yale03: >>EKF,≈
 

hairy

Presenter�
Presentation Notes�
This slide shows what a TLRN is.  TLRN is essentially The General Case for neural networks with “short term memory” or “working memory” in a certain sense. Everything else is a subset, a special case.
In the extreme case – if an ObjectNet is used as the Static Network inside this diagram, one winds up with a kind of universal (deterministic) system, a universal approximator for time-series dynamic relations. (Sontag has in fact proved some universal approximation theorems for the dynamic case.) Note that this flow chart does NOT require that R(t-1) be fed back only to the “input layer” of the static network inside; it does not even require that the static network HAVE layers at all!
    Some have misunderstood, saying “You are only inserting recurrence outside the network. Others insert it inside.” But this is a matter of mathematical convention. The arrow refers to a flow of information, reflected in the equations. For example, I give examples of this using the “sticky neuron,” in the book edited by Maren (1990), in which the time delay is from the “membrane” of a neuron to itself in the next time period, bypassing the tanh function. (Schmidhuber and Ford have presented examples of how this kind of placement may or may not be useful, in different applications. But the brain does appear to contain sticky neurons, in my view!) Chapter 8 of Roots gives the actual equations of a TLRN for the case of nonsticky neurons.
 	Others have said “TDNNs represent NARMA functions, which are the most general case and much easier to train.” Unfortunately, some strands of control theory have misconstrued the original literature on autoregressive moving-average (ARMA) processes. Even neural network people should at least read the classic text by Box and Jenkins (the multivariate case of which is discussed in chapter 3 of Roots), which explains in clear practical terms why the TDNN (ARX) kind of design is NOT universal. In fact, there are many other reasons. Linear ARMA models are a special case of TLRNs.
	The TLRN (with MLPs inside) is the crucial workhorse for all the most impressive real-world applications of ANNs today, for many reasons. HLADP explains some of the reasons. For example, Feldkamp et al give examples where simple TLRNs dramatically outperform extended Kalman filters in nonlinear state estimation, and do as well as far more expensive less brain-like particle filter designs now growing in popularity. I will say more in later slides. �



Training: BrainTraining: Brain--Style Prediction Is Style Prediction Is 
NOT Just TimeNOT Just Time--Series Statistics!Series Statistics!

One System does it all -- not just a collection of 
chapters or methods
Domain-specific info is 2-edged sword:
– need to use it; need to be able to do without it

Neural Nets demand/inspire new work on general-
purpose prior probabilities and on dynamic 
robustness (See HIC chapter 10)
SEDP&Kohonen: general nonlinear stochastic ID
of partially observed systems

Presenter�
Presentation Notes�
I have said enough for now about the “ladder” of neural network structures for “prediction” and related applications. To summarize – there are simple designs which work well enough on simple tasks, and more powerful designs which work on the simple tasks but also on more general kinds of tasks. 
	Some statisticians have argued that “neural networks are just a branch of statistics.” Textbooks are sometimes written which contain dozens of methods which are essentially just a choice of canned topologies. The user is sometimes urged to remember the “law of no free lunch;” the idea is that different methods work on different problems, that there is no universally better method, and that serious people always operate by studying the specific domain problem, picking a chapter, and developing expertise relevant only to that narrow domain. General purpose competence is impossible. Thus to build robots for space application, we may identify 2,000 standard tasks, and propose that NASA fund 2,000 back-to-back 3 years studies to develop specialized methods for each of the tasks. Some theorists call this “practical.” 
	The “law of no free lunch” (as normally interpreted) is only HALF true. It is true that statisticians have the right to complain when a person tries out tweak number 166 on one narrow test problem, and draws universal conclusions from one example. But is possible, for example, for the domain of competency of  one topology to be subset of another, more universal topology; that’s what the Turing theorem is all about, and the capabilities of Object Nets are closely related to Turing concepts. 
	But in the end, as I described before, we cannot escape from the issue of analyzing the prior assumptions like smoothness, symmetry and robustness which make it possible to develop universal brain-like capabilities. That research challenge is at the core of the neural network field, and we have already learned a lot that goes well beyond what classical maximum likelihood statistics can do.
�



Three Approaches to Three Approaches to 
PredictionPrediction

Bayesian: Maximize Pr(Model|data)
– “Prior probabilities” essential when many inputs

Minimize “bottom line” directly
– Vapnik: “empirical risk” static SVM and “sytructural 

risk” error bars around same like linear robust control 
on nonlinear system

– Werbos ’74 thesis: “pure robust” time-series
Reality: Combine understanding and bottom line.
– Compromise method (Handbook)
– Model-based adaptive critics

Suykens, Land???? 

Presenter�
Presentation Notes�
What does all of this theory tell us about practical issues, like how to train an MLP or linear classifier for best performance?
	In most ANN work today, people train MLPs to do supervised learning, based on a very simple concept: they train the weights so as to minimize the square error of the predictions over the training set. The equations for doing that, using backpropagation, are widely published in simple texts (and my book). The capability is available in many canned packages as well. Statisticians have rightly pointed out that this is basically an extension or example of the concept of “nonlinear regression,” known for decades.
	But practical statisticians have come to accept that minimizing square error isn’t always the best way to go when there are many, many input variables. Instead of minimizing square error, many minimize a weighted sum of prediction errors plus the size of the weight vector. This is called “ridge regression” in the linear case. In 1987, I proposed that we can apply this to what we minimize in training MLPs. (This is different from an earlier suggestion by Hinton that we use an equivalent term on a temporary basis, called “weight decay,” in order to speed up convergence to the weights which minimize square error.) But more sophisticated “penalty” terms have been developed in the meantime. For example, Phatak of UMBC has developed penalty terms which prevent statistical problems WITHOUT reducing the number of neurons or connections; this allows a kind of redundancy and fault-tolerance closer to what we actually see in the brain. More research is needed, of course and many approaches need to be pulled together.
	Recently, Vapnik, “Father of the SVM,” has elicited great excitement with the idea of minimizing losses directly, instead of using Bayesian concepts grounded in the idea of “probability of truth.” I used an extension of that general approach to the time-series case to improve political forecasts in my 1974 thesis – but found later that we really need a kind of compromise for the general case.
�



F(t-3)             F(t-2)             F(t-1)            pH(t-3)         pH(t-2)         pH(t-1)

pH(t)

Example of TDNN used in HIC, Chapter 10
TDNNs learn NARX or FIR Models, not NARMAX or IIR

Presenter�
Presentation Notes�
In fact, in 1990, I joined with a famous chemical engineer, Prof. Tom McAvoy of UMCP, to use the same statistical concepts I used in my thesis, in order to improve the training of a simple TDNN to predict data form simulated and real chemical plants. Notice that there is no advanced topology here, and no penalty functions. But even so… we needed to use backpropagation through time, a method which I developed for recurrent systems, to get bets predictions from this simple network.
�
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Presenter�
Presentation Notes�
At the time of publication of HIC, we had done four test studies on simulated and real data, including a proprietary simulation of a polymer plant and real data from a wastewater treatment plant.

This is a case where improved prediction can translate directly into improved control, and a factor of two reduction in pollution (waste).

On average, when we trained the TDNN using the “pure robust” method of training, we cut errors by two-thirds, in the kind of multiperiod backcast testing from the training set to the test set that really represent the value of the predictor to the application.

Subsequent 5 studies by Ted Su, a PhD student of Tom’s, strengthened the conclusion here.

There was one interesting technical aspect. Training tended to be easier, but the benefits smaller, for simulated plants. Training was harder, but far more valuable, for predicting real plants. Tricks like using good initial values and “shaping”  turned out to be critical to the training.
 
The key idea in shaping is to train one network to perform an easier task – and then use those weights as the INITIAL VALUES in training a network to perform a harder task. The new networks could have the same structure as the older one, or it could have some (zero) new connections added. Shaping can be done in stages, task by task, step by step. In fact – even humans need to use step-by-step learning, in order to learn very complex tasks. �



PURE  ROBUST  METHODPURE  ROBUST  METHOD

Model Network

Model Network

Error
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Presenter�
Presentation Notes�
This slide basically describes what the pure robust method is like. Some people in control theory would say “this is just parallel training” – but it is drastically different in practice. (See HIC for a discussion of why.)
	In ordinary statistical training, one minimizes the square error between the observed X(t+1) and the prediction for X(t+1) which results when the ACTUAL, OBSERVED values for X(t) and u(t) are plugged into the model. But in the pure robust method, for any starting X(1), one builds up an entire chain of predictions, by plugging in the PREDICTION for X(t) instead of the actual value. One minimizes the square error in this multiperiod approach. In fact, a number of very competent engineers have quietly called this “the multiperiod method which we all know about” – without referring back to the original theory, which warns about its limitations.
	In 1977, I published a paper in the IEEE SMC Transactions, applying this method to the prediction of social trends  (conflict and economics) in Latin America. The method failed very badly, for theoretical reasons I discussed beforehand. The pure robust method – the method of “just minimizing the bottom line,” is not a good universal approach. The theoretical reasons(discussed in HIC) are a bit subtle for today; crudely, I would say that reality involves a COMBINATION of hidden order (what forces the robust approach) and hidden mixing or noise (which forces stochastic approaches); only by finding a method which unifies the two can we have a universal system, or a system able to handle plants which combine both aspects. The 1977 paper demonstrated a “compromise method” to do that – a special penalty function, in effect – which was able to cut in half the errors in predicting GNP in Latin America. It worked better both short-term and long-term. HIC discusses the neural net version and possible extensions – and the need for further research to do even better.  
	The pure robust and compromise methods both require the use of true backpropagation through time (BPTT), to work. My original definition of BPTT as a specific exact, low-cost closed method was unambiguous; however, some psychologists have used the term as a kind of buzzword for inexact methods, leading to the false impression that it is harder to train such recurrent systems than it really is. Ford and Principe, among others, have fairly bulletproof implementations of BPTT available. 
�



Beyond Bellman: Learning & ApproxBeyond Bellman: Learning & Approx-- 
imation for Optimal Management of imation for Optimal Management of 

Larger Complex SystemsLarger Complex Systems 
www.eas.asu.edu/~nsfadpwww.eas.asu.edu/~nsfadp

Basic thrust is scientific. Bellman gives exact optima 
for 1 or 2 continuous state vars. New work allows 
50-100 (thousands sometimes). Goal is to scale up in 
space and time -- the math we need to know to know 
how brains do it. And unify the recent progress.
Low lying fruit -- missile interception, 
vehicle/engine control, strategic games
Workshops: ADP02 & Dynamic Stochastic Grid 
testbed; ADP06 April 2006



Wunsch/venayagamoorthy/HarleyWunsch/venayagamoorthy/Harley 
ADP Turbogenerator ControlADP Turbogenerator Control

Stabilized voltage & 
reactance under intense 
disturbance where 
neuroadaptive & usual 
methods failed
Being implemented in full-
scale experimental grid in 
South Africa
Best paper award IJCNN99
1st of many, being deployed

Presenter�
Presentation Notes�
This is one of applications of DHP discussed in HLADP, and also in IJCNN03(Portland). It has continued to work on larger physical test systems, involving multiple generators and digital power switching devices (“FACTS”).
Because it reduces “down times” on real generators by a substantial fraction, the team which has developed this technology is discussing possible commercial testbeds, while extending their research to address ever larger systems. The implications for the electric power system are discussed in HLADP.
This work, centered on Missouri-Rolla (but also Georgia Tech and South Africa), is one of the important nuclei from which we could develop “dynamic stochastic optimal power flow,” something badly needed in the electric power sector.
�



Human mentors robot and then Human mentors robot and then 
robot improves skillrobot improves skill

Learning allowed robot to 
quickly learn to imitate
human, and then improve
agile movements (tennis
strokes). Learning many 
agile movements quickly 
will be crucial to enabling 
>80% robotic assembly 
in space.

Schaal, Atkeson
NSF ITR project

Presenter�
Presentation Notes�
Assembly costs in space are perhaps the other major bottleneck or uncertainty that we need to face head-on, for ALL versions of large exports form space. Basically, that leads to two major research challenges: (1) to reduce the cost per person-month of supporting humans in deep space; and (2) trying to achieve the ambitious goal in which 80-90 percent of the work in hard vacuum is done by robots under tight human control, at minimum cost. We cannot get away with CHOOSING between human and robotic technologies, because we will need to maximize our capabilities in both areas in order make costs low enough.
	This slide shows an example of a successful project we funded, relevant to robotics. Primary funding and management came from ECS, with co-funding from the robotics program in the Computer Science directorate of NSF (“CISE”). See the NSF “nuggets’ database for more information. This work was only a beginning,  but it achieved some real breakthroughs in performance. If it takes, say, 2000 skilled tasks to do a space assembly, we will need a new paradigm – a greater use of LEARNING instead of slow and cumbersome hand-coding and special-case design – in order to achieve the capabilities we need in less than a century.
	Regarding the cost of supporting humans – there are many research challenges. Materials from the moon or asteroids could play a crucial role in making it possible to reduce the cost of supporting large numbers of people in space, exactly as O’Neill and Criswell have proposed. The challenge, again, is to find a way to make those visions real, as efficiently as possible.
.�



ADP Controller Cuts ADP Controller Cuts NOxNOx emissions emissions 
from Diesel Engines by 98%from Diesel Engines by 98%

•Sarangapani UMR NSF grant



Three Ways To Get  StabilityThree Ways To Get  Stability
Robust or H Infinity Control                    

(Oak Tree)
Adaptive Control (Grass)
Learn Offline/Adaptive Online 

(Maren 90)
– “Multistreaming” (Ford, Felkamp et al)
– Need TLRN Controller, Noise Wrapper
– ADP Versions: Online or “Devil Net”

Presenter�
Presentation Notes�
There are three major pillars in “modern control theory” – and few people who really know all about them all. Neurocontrol people should at least learn the big picture of what they are, however.
	The big three are: (1) optimal control (including LQG and dynamic programming and N-period ahead optimization, discussed in classic texts by Bryson and Ho or Stengel); (2) adaptive control; (3) robust control. I have already stressed optimal control as an approach, but many people rely more on robust or adaptive control, which focus on tracking problems.
	The distinction between adaptive and robust control is actually like a famous versus from the Chinese classic, the I Ching. They ask: “Which is stronger, the oak tree or the grass? The oak tree looks so much stronger – massive an unmoving. The grass looks so weak. But when the typhoon comes, it is the oak tree which falls.” Robust control, like the oak tree, tries to find control designs AND parameter values which stay fixed in application, and are able to keep a plant stable under a wide range of external conditions. Adaptive designs try to change the parameters as conditions change.
	Yet engineering today does not seem to follow the I Ching. The adaptive control designs used today are famous for being much less stable and reliable than the robust control designs. How can that be?
	The usual form of robust control popular today are linear feedforward methods, easily constructed in MatLab. But there is a third way to solve tracking problems, where neural networks (e.g. ala Ford but with ADP) and advanced, nonlinear robust control converge to the same design. It is learning offline to be adaptive online. Or the ADP version could be called “using neural nets to provide the most accurate available approximation solution to the HJB of the nonlinear robust control problem with feedback loops.” This is the stablest method, and it allows integration of performance and stability together as goals. �



Example from Example from HypersonicsHypersonics:: 
Parameter Ranges for Stability (HParameter Ranges for Stability (H∞∞))

Center of Gravity
at 12 Meters

Center of Gravity
at 11.3 Meters

θ2

θ1

Presenter�
Presentation Notes�
This is an example of why today’s ordinary best linear multi-input multi-output robust control is not so universally good enough as sometimes claimed. It is taken from a world-class paper on the robust control of a model hypersonic aircraft, from the AIAA conference in Norfolk on that topic.
   The graph speaks for itself. With two control parameters, there is a range of values which can stabilize the craft if the center of gravity is at 11.3 meters. A different value if it is at 12 meters.
   One might ask: “Is this an airplane or is this canoe? Walk two feet and it keels over…”
The authors may recommend, reasonably, that there should be tight effort to control the center of gravity. But is that really the best we can do? Common sense would agree with the I Ching here. Somehow, it ought to be possible to achieve more stability by somehow sensing where the center of gravity is, and adapting to its changes. Why doesn’t it seem to work out that way in practice? 
�



Idea of Indirect Adaptive Idea of Indirect Adaptive 
ControlControl

Error =
(X - Xr)2

Desired “State” Xr(t+1)

Action
Network

Model
Network

X(t+1)u(t)

Actual State R(t)

Derivatives
of Error

(Backpropagated)

Presenter�
Presentation Notes�
The reason why adaptive control doesn’t beat out linear robust control here can be seen easily by looking at the mathematics (flow chart) of how we actually DO adaptive control today. The idea of being adaptive is not the problem; the problem lies in HOW the adaptation is done today.
This slide really specifies exactly how the best form of adaptive control is implemented today with neural networks. Basically, the weights in the action network (“controller”) are trained by derivatives of tracking error backpropagated through the trained model of the plant. In other words, the controller is trained to minimize tracking error AT TIME t+1. It only looks one period of time ahead. It is myopic. It has been well-known since Wiener and before that myopic control can easily lead to instability – especially when the actions we need to get us back on course ten times ahead lead to no effect or temporary negative effects one time ahead. These problems have fancy names (deadtimes; nonminimum phase; sign reversals or indeterminism), but they are reasonably straightforward – and extremely common.
The design here does sometimes work, especially in the hands of those who cultivate the art of tweaking it. But I have many times seen people try it out, uncover vast explosions or transient problems, and then say “neural nets don’t work” – when all they had to do was add one arrow in the flow chart to solve the problem and beat out everything else they have! They often feel compelled to use this design because of all the many stability profs proven for classical and neural adaptive control – but those proofs all assume conditions about the environment which are very strong and rarely met. There are two easy ways to get much better performance and stability both.
�



Backpropagation Through Time Backpropagation Through Time 
(BTT) for Control (Neural MPC)(BTT) for Control (Neural MPC)

Error =
(X - Xr)2

Action
Network

Model
Network

u(t)Action
Network

Model
Network

Error =
(X - Xr)2

Predicted X(t)

Predicted X(t+1)

u(t+1)
Xr(t+1)

Xr(t)

Presenter�
Presentation Notes�
This is the easiest of the two upgrades. It needs only the same kinds of nets as the previous design – but now there is an explicit N-period ahead lookahead, and a minimizatoin of eror OVER TIME.
In the Miller, Sutton and Werbos book, we noted four implementations of this kind of design by that time. One, a chapter in the book, was Widrow’s truck-backer upper, a truly remarkable system which was once very widely publicized – and deserves to be remembered more than it has been. The agility of that system in nonminimum phase maneuvers, with a fairly large physical truck, competing against a human truck driver… was very impressive. And it was all due to a use of BTT.
Pseudocode for BTT as a control method can be found in chapter 8 of Roots.
It should be noted, however, that use of TLRNs in this design is crucial to the kind of capabilities that Ford has been able to achieve here. A thorough understanding of BTT is essential. Portions of the Ford software are said to be posted soon at the web page of Prof. George Lendaris of Portland State (though I haven’t checked).
Suykens et al (Springer) have a book Neurocontrol which proves that the stability guarantees for this kind of design are far stronger and more universal than the guarantees for indirect adaptive control.

In principle, this design gives the right answer only for deterministic plants. However, I have pointed out for many years (e.g. ICNN 88!) that the method is easily extended to incorporate those features of “Differential Dynamic Programming” which address the stochastic case. BTT control has turned out to be unusually robust in practice, and still hard to beat. In the long-term, however, theory tells us that ADP is the more powerful method for the more general case, and a few relevant examples have begun to clarify some of the issues.�



Level 3 (HDP+BAC) Adaptive Critic Level 3 (HDP+BAC) Adaptive Critic 
SystemSystem

Critic

Model

Action

J(t+1)

R(t+1)

u(t)

X(t)

R(t)

Presenter�
Presentation Notes�
This is an alternative way to try to “add stability” to indirect adaptive control.
Here we use the SAME design as IAC, except that we replace the previous ad hoc arbitrary measure of tracking error with a trained critic network. Control theory tells us that SOME choice of the Critic (a “Liapunov function”) should be able to stabilize the plant, for ANY controllable plant, not just the limited kinds that standard adaptive control can handle. This can even be viewed as an extension of adaptive control
Back in 1994, I proposed that we could constructively find a Liapunov function, by using ADP methods. In the ensuing years, control Liapunov functions have become kind of growth industry, but most of the papers today do not address the general case.
In 1998, I showed how proper ways of training the critic will ALWAYS converge to the right “J” function, which happens to be a Liapunov function, for any controllable linear multi-input multi-output plant. This strongly suggests that these new training methods, combined with the design in this flow chart, yield the “holy grail” of classical adaptive control – universal stability in a truly adaptive design. See arXiv.org, adap-org 9810001 for details.
This also strongly suggests that the nonlinear versions of these new training methods could be useful in applications where rock-hard stability is desired.
But for today’s applications, offline training using simpler methods may be the best choice; once these methods converge, we get a stability guarantee after the fact.
�



Gaps in the Gaps in the ““SOASOA”” level level 
of ADP Proper: Where Isof ADP Proper: Where Is……??

Whole system universal stability proof for linear MIMO 
adaptive control using HDPG, DHPG, GDHPG? (See 
arxiv.org 1998..) 
General-purpose tools in MatLab, etc.?
Community knowledge, unification, tools?
ADP linked to good observers like TLRN? (e.g. see 
Feldkamp/Prokhorov paper posted at…)
Good balance of online/offline iteration/learning, of model 
use vs robustness, discrete/continuous (e.g. GDHP)?
Good “competition” example?
Followup on best big application demonstrations?



Lower Level 
Adaptive Critic System
Inf. Olive + Cerebellum

Upper Level Critic Network

Upper Level Model Network

U(t) for
Lower System

J(t+1)-J(t) from Upper System

Additional Local
Utility Components

2nd Generation “Two Brains in One Model”

Concept in “Statistical/Numerical…”, Trans. SMC, 1987 (on web)
Joint papers with Pellionisz (experimental follow-on still warranted)
See equations in Handbook of Intelligent Control, Ch. 13 & Prokhorov

4-8 hertz

100-200 hertz



3rd Gen: 3 Brains in 1?3rd Gen: 3 Brains in 1?
Upper Brain: Values, Noise, Limbic 
Critic and Neocortex
Middle: Basal Ganglia, AI-Like, Tasks, 
Mishkin, Houk, Brooks, Landing Intent
Lower: Smoothing/Speed/LQG Like, 
Olive Critic and Cerebellum
Complex 3rd Generation Theory over-
responsive to AI (Albus) sketched in 
1997 paper in Karny et al. 



Key Issues in 3Key Issues in 3rdrd Generation ModelGeneration Model

Can we (and do brains) do better than 2nd gen brain in handling 
greater spatial & temporal complexity, by new designs & exploiting 
unspecialized but structured prior information (Kant) to get 
faster/better learning?
What is our answer to AI’s “spatial/temporal chunking” & stochastic 
search?
All 3 demand more attention and work!!!

Spatial
Complexity

Temporal Complexity (Multiple Time-Intervals)

Creativity/Imagination



CEREBRAL CORTEX
Layers I to III

Layer IV: Receives Inputs
Layer V: Output Decisions/Options
Layer VI: Prediction/State Output

BASAL
GANGLIA

(Engage Decision)

THALAMUS

BRAIN STEM AND CEREBELLUM

MUSCLES
See E.L. White,
Cortical Circuits...

3rd Generation View of Creativity/Imagination: Layer V = “Option Networks”

•Challenge: www.werbos.com/WerbosCEC99.htm.
•Important work by Serpen, Pelikan, Wunsch, Thaler, Fu – but still wide open. 
Widrow testbed. 

Presenter�
Presentation Notes�
 �

http://www.werbos.com/WerbosCEC99.htm


33rdrd Generation View of TimeGeneration View of Time
Before 1997, under NSF$, Sutton had modified “Bellman 
equation” for idea of “options” – chunks of action over time 
optimized at low level, to be selected by ADP at high level 
as discrete choices. (No object, no parameters)
In 1987 paper, I reported more general Bellman equations 
for time structuring, e.g.:

Ji
T = (Ji

A)T +SUM (over j in N(i)) JJ
T(JB )i

J

where JA represents utility within valley i before exit,
and JB works back utility from the exits in New valleys j
within the set of possible next valleys N(i). Leads directly to a 
neural net approximator using “decision blocks” similar to 
then-current ideas re basal ganglia and “tasks”.

•Despite many discussions, no apps except options in robotics “behavior libraries”
(e.g. Schaal) yet! Barriers: politics; my time;  presence of spatial complexity 
also in many potential apps! Most “context” better handled by TLRNs.



Moving Window Net: Clue Re ComplexityMoving Window Net: Clue Re Complexity

Best ZIP Code Digit Recognizer Used “Moving Window” or 
“conformal” MLP! (Guyon, LeCun, AT&T story, earlier…)
Exploiting symmetry of Euclidean translation crucial to reducing
number of weights, making large input array learnable, outcomes.

Hidden node
Value at I,j

9 to 1 MLP

Large pixel array input for Zip Code Digit

Same MLP with
same weights “moved”
over input array to yield
hidden node array

Hidden
node 
array

MLP

Which
digit?



GENERALIZED MAZE PROBLEMGENERALIZED MAZE PROBLEM

NETWORK

Jhat(ix,iy) for all 0<ix,iy<N+1
(an N by N array)

Maze Description
- Obstacle (ix,iy) all ix,iy
- Goal (ix,iy) all ix,iy

At arXiv.org, nlin-sys, see adap-org 9806001
For rapid practical learning, Ilin, Kozma

Cellular SRN: The Recurrent (SRN) Generalization 
of “Conformal MLP”

Presenter�
Presentation Notes�
But… certain supervised learning tasks simply cannot be performed by ANY feedforward network, global or local. (Or by any network trained by Hebbian methods, whose occasional success is based on nearest-neighbor prediction.) The theory behind this was discussed in HIC – but a practical example may be more useful.
	Consider the “simple” problem of trying the learn how to navigate through an N by N square maze. Many AI people have studied the problem of “learning the maze” – of sending a robot into an unknown maze, and having it bounce off the walls a few hundred times until it finally blunders its way through. But this is not what we want real robots to do. It is not even what we want unmanned ground vehicles to do. We want systems which, like humans, can learn the GENERALIZED ability to LOOK AT THE MAZE and see a way through, as fast as possible. (And, yes, humans may ALSO use mental simulation, but not ONLY that.) 
	This leads immediately into the Generalized Maze task illustrated here. Usually people describe this as the task of learning to map from an “input vector” which is actually a 2D description of where the goals and obstacles are, to a target which is the direction to move to get to the goal as soon as possible. But for a simple experiment, it is easier to define the targets as the dynamic programming “map” or evaluation of different squares in the maze, which immediately shows the robot which neighbor to move to. It turns out that MLPs fail miserably in either version of the task. Likewise, “Simple Recurrent Networks” (a version with simple training popular amongst psychologists) fail miserably. But the web page above explains how Pang and I were able to perform this task, using another kind of neural network topology, called a Cellular SRN. (This generalizes the older type of “SRN,” as I will discuss.) There is reason to believe this is essentially the most general useful way to represent nonlinear input-output mappings – and that it is critical to brain-like success in applications such as autonomous navigation, segmentation and connectivity analysis, success in strategic games, etc. Thus if an MLP is not good enough… look up the web page… 
�



4 3 2 1 2
5 1 0 1
6 7 1 2
7 8 7 3
8 7 6 5 4

Presenter�
Presentation Notes�
Why do I claim MLPs would not work on Go, and what alternatives might exist?
     This slide and the next slide depict a study I did with XiaoZhong Pang several years ago, on neural networks to approximate a deceptively simple-looking value function. (See xxx.lanl.gov/abs/adap-org/9806001 for the original study. These slides represent an extension I later presented at IJCNN.)
    The issue here is maze navigation -- a problem often discussed in RL papers. But conventional RL papers discuss “learning a maze.” This is not how humans do obstacle avoidance. We do not just bump against the walls and “learn the room” every time we enter a new room. We learn a GENERAL skill, the skill of LOOKING at a room, of INPUTTING a visual image, and then seeing our way through. The goal here was to train a neural network to input the 5-by-5 pattern of obstacles (in black) and goal (in yellow), and then output the value function. In my final study,I trained a neural network on all squares in six easy mazes (shown here), and showed that the learning generalized to better performance on six hard mazes (the next slide) which the network was never trained to.
	But an MLP was absolutely unable to learn this task, or even to come close. The problems here are very similar to the problem of learning the “connectedness” map which Minsky talked about, years ago, in his book on Perceptrons. If ADP systems using MLP critics cannot even learn such a simple general obstacle-avoidance task like this, how could they ever learn more complex problems, like how to extract a car from a parking lot? Or how to navigate a dangerous outdoor field -- something the mouse is very good at? Or how to play a game like Go, where patterns of connection are crucial to the strategic situation?�



Presenter�
Presentation Notes�
After the work with Pang, I actually trained a simple cellular SRN on the six easy mazes (above), and then used these 6 as a test set. No matter how long I trained on the training set, performance on the test set kept improving.
That was reported in several brief papers, including Proc. IEEE-SMC (Beijing) and the Proc of the Yale Workshop on Learning and Adaptive Systems (available from Narendra at Yale).

In all fairness, however, the learning was slow. I believe it can be made much faster, just as basic backprop with MLPs was accelerated after some effort. I have a project in the works to try to show this (though my time is very limited). Certainly the brain does this somehow, and the web page describes several learning methods hardly explored in our brief study. For the time being, evolutionary computing provides one way to train such networks – especially if one uses methods (like particle swarm optimization) which are better than discrete genetic algorithms for tuning continuous variables. But their scaling abilities are limited, and it will be critical to work towards a more brain-like solution to faster training here.�



Spatial Symmetry in the General Spatial Symmetry in the General 
Case (e.g. Grids): the Object NetCase (e.g. Grids): the Object Net

4 General Object Types (busbar, wire, G, L)
Net should allow arbitrary number of the 4 objects
How design ANN to input and output FIELDS -- variables like the SET of values for 
current ACROSS all objects? 
Great preliminary success (Fogel’s Master Class Chess player; U. Mo. Power)
But how learn the objects and the symmetry transformations????  (Brain and images!!)

Presenter�
Presentation Notes�
In order to apply methods like DHP to the entire global electric power grid, we would need to develop neural networks able to input and output something new – not vectors, as in ordinary neural nets – but complete relational networks.
This slide illustrates the problem.
   To solve the problem, I have developed a concept called “Object Nets,” for which I recently received a patent. The core idea is illustrated in the next two slides. ObjectNets are basically a concrete piece pulled out of the more complex design concept outlined in my chapter in Karny et al eds, Dealing With Complexity: A Neural Network Approach, Springer, 1997.�



From Neural Networks to the From Neural Networks to the 
Intelligent Power Grid: What It Intelligent Power Grid: What It 
Takes to Make Things WorkTakes to Make Things Work

What is an Intelligent Power Grid, and why do 
we need it?
Why do we need neural networks?
How can we make neural nets really work here, 
& in diagnostics/”prediction”/”control” in 
general?

Paul J. Werbos, pwerbos@nsf.gov
•“Government public domain”: These slides may be copied, posted, or distributed freely, so long as 
they are kept together, including this notice. But all views herein are personal, unofficial.

Presenter�
Presentation Notes�
Good morning!
I am very happy to have a chance today to help you in the IES community move faster to meet some of the important challenges in front of us. In my view, the technologies we are working on here might well decide whether the human species manages to avoid extinction in the coming decades. This is not an exaggeration; I will explain a bit today – and I hope I will help.
	The electric power area – from motors and chips to global energy economics – is a highly crossdisciplinary area in itself. Major opportunities are being lost in the world today because of the gaps in communication just within this area. In power electronics, especially, we need to understand the real needs of the customers – the world energy system – in order to anticipate and meet their needs in a more proactive way. We need to do this, in order to get ahead of the curve and not always lag behind, playing catch-up with our competitors.
	But the neural network field is also a large cross-disciplinary area, and most of what you read in the general literature is not quite correct. There are new and powerful tools now available, and there are also some pitfalls that are not heavily advertized. They apply to all kinds of “prediction” and “control” tasks, including some we think of as pattern recognition, data mining, planning, scheduling, state estimation, sensor fusion, data compression, etc., etc.
	Today, I will try to give you an overview of how these two large areas come together. Because time is limited, I won’t be able to give you all the equations you need to implement everything I talk about – but I will tell you where to look for more detail and for a few of the working examples. Most of my slides will come from two sources:
www.ieeeusa.org/policy/energy_strategy.ppt and www.eas.asu.edu/~nsfadp.
I can send you a few additional papers by email upon request.
	The energy policy slides contain text explanations. You can see the text in powerpoint by clicking on “Notes” under “View,” or printing with the “notes” option in the print options window.
  �



Quick Review of www.faceQuick Review of www.face--rec.orgrec.org

See Chellappa et al for review
3 best recognizers use ANNs, learning
Wechsler, von der Malsburg: need to learn 
elastic symmetry transformations (e.g. curl up 
mouth), not just Euclidean
Low-lying fruit: use CSRN or Object Net to 
learn elastic symmetry transformations, but how 
does brain do it? Foveal vision doesn’t have 
Euclidean metric symmetry. (Though topology 
helps, connection learning.)



Fresh Look: Initial Approach to BrainFresh Look: Initial Approach to Brain-- 
Like Symmetry Learning and UseLike Symmetry Learning and Use

First learn a family of vector maps fα such that:
– Pr(fα

 

(x(t+1)| fα

 

(x(t)) = Pr(x(t+1)|x(t)) for the same conditional probability 
distribution Pr and all α.

Exploit these symmetries via:
– “Reverberatory generalization”: after observing or remembering the pair 

{x(t+1),x(t)}, also train on {fα

 

(x(t+1),fα

 

(x(t))}.
– “Multiplex gating”: after inputting x(t), pick α

 

to map x to fα

 

(x(t), and use that 
as input to a “universal” canonical prediction model. (e.g. Olshausen. Not the 
same as spontaneous or affective or salience gating.)

– “Multimodular gating”: like multiplexed, but implement parallel (coordinated) 
copies of the canonical model to allow use on multiple objects in parallel at the 
same time.

Human brains seem to exploit the first two (or second), but how are 
the symmetry transforms learned? How far can a purely emergent 
kind of design get by learning?



Input
X

Encoder Initial
R Decoder

Prediction
of X

Relative
Entropy

Solution Exists Off-the Shelf! (SEDP, HIC Chapter 13)

Noise Generator
With Adaptive Weights

Simulated
R

Learning symmetry takes most time; encoded (multiplex gated!!!) 
image allows fast learning of objects, faces, etc., as if brute force gating or 
transformation encoding!!



To get from SEDP to full Mammal To get from SEDP to full Mammal 
Brain Like Spatial Complexity:Brain Like Spatial Complexity:

Work to improve learning speed, robustness & 
generalization in SRN, TLRN, CSRN, Object Net, GDHP 
and SEDP – including memory-based learning as discussed 
often, & analysis of mathematical properties, toolkits, etc.
Active control of saccade & efferent copy to encoder
Test short-term object permanence (automatic), and 
augment long-term memory I/O interface for “object 
identity” and “world modeling.”



New Data on Complexity in the Brain

Petrides (IJCNN06) shows that dorsolateral (DL) and orbitofrontal (OF)
prefrontal cortex – our “highest” brain centers – answer two basic questions:
OF: Where did I leave my car this time in the parking lot? (space?)
DL: What was I trying to do anyway? (time?)
•BUT: even bird brains (no neocortex) handle great spatial complexity & have big basal ganglia!!
• Hypothesis: SEDP fits pyramid cell geometry very well but is already be in old cortex (bird!) 
•Neocortex (mouse) harnesses/alters stochastic mechanism in SEDP for creativity.
•OF strengthens object identity & world modeling & object-oriented action. (Test birds, lizards!)
•Temporal aggregation is by “re-entrant” mechanism, not explicit temporal hierarchy.

Presenter�
Presentation Notes�
ANNs have also been defined as “Abstract Neural Networks.” They are defined as well-specified mathematical systems designed to capture the highest kind of intelligence that we find in mammalian brains. They are designed to capture the functional capability of the system, not the precise details of what is presently known about the hardware itself.
	But how can we understand what the brain as a whole system really does? What kind of mathematics is needed, in order to express the kind of function which this information processing system performs?
	In this slide, I remind us that the brain AS A WHOLE SYSTEM is an intelligent controller. It includes pattern recognition and memory and prediction and other key capabilities as subsystems – but you can’t really understand what a subsystem is doing unless you see how it fits in as part of the larger system. Every piece of the brain has evolved so as to contribute to the function of the whole – the function of calculating decision outputs (sometimes called “squeezing and squirting”) which contribute to the long-term goals of the organism.
	Thus in order to develop an integrated, functional understanding of how the brain performs this function, we need to understand the mathematics of effective intelligent control, that really works in flexibly learning to handle wide varieties of tough control problems. 
	Many areas of technology try to teach their students a textbook of a hundred alternate methods to solve a hundred different tasks. And they often try to teach neural networks that way. But that does not do justice either to the brain or to what the neural network field is about. The brain provides a SINGLE flexible system which somehow INTEGRATES the various principles of learning and control, so that ONE system can do it all! There are still variations from brain to brain, but each individual mammal brain has a kind of universal learning ability. Mammal brains do not start out as an “empty slate” – but they are capable of relearning almost all of the specific abilities that they are normally born with. Our primary goal in ANN research is to capture that universal learning ability in designs we can implement and use.  
		 �
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