
Backwards Differentiation in AD and Neural Nets: Past Links and New
Opportunities

Paul J. Werbos1

Abstract

Backwards calculation of derivatives – sometimes called the reverse mode, the full adjoint method, or
backpropagation, has been developed and applied in many fields. This paper reviews several strands of
history, advanced capabilities and types of application – particularly those which are crucial to the
development of brain-like capabilities in intelligent control and artificial intelligence.

Keywords: reverse mode, backpropagation, intelligent control, reinforcement learning, neural networks,
MLP, recurrent networks, approximate dynamic programming, adjoint, implicit systems

1 Introduction and Summary

Backwards differentiation or “the reverse accumulation of derivatives” has been used in many different
fields, under different names, for different purposes. This paper will review that part of the history and
concepts which I experienced directly. More importantly, it will describe how reverse differentiation could
have more impact across a much wider range of applications.
 Backwards differentiation has been used in four main ways that I know about:

(1) In automatic differentiation (AD), a field well covered by the rest of this book. In AD, reverse
differentiation is usually called the “reverse method” or “the adjoint method.” However, the term “adjoint
method” has actually been used to describe two different generations of methods. Only the newer
generation, which Griewank has called “the true adjoint method,” captures the full power of the method.
 (2) In neural networks, where it is normally called “backpropagation”[1-3]. Surveys have shown
that backpropagation is used in a majority of the real-world applications of artificial neural networks
(ANNs). This is the stream of work that I know best, and may even claim to have originated.
 (3) In hand-coded “adjoint” or “dual” subroutines developed for specific models and applications
(e.g.[4-7]).
 (4) In circuit design. Because the calculations of the reverse method are all local, it is possible to
insert circuits onto a chip which calculate derivatives backwards physically on the same chip which
calculates the quantit(ies) being differentiated.. Professor Robert Newcomb at the University of Maryland,
College Park, is one of the people who has implemented such “adjoint circuits.” Some of us believe that
local calculations of this kind must exist in the brain, because the computational capabilities of the brain
require some use of derivatives and because mechanisms have been found in the brain which fit this idea.

These four strands of research could benefit greatly from greater collaboration. For example – the AD
community may well have the deepest understanding of how to actually calculate derivatives and to build
robust dual subroutines, but the neural network community has worked hard to find many ways of using
backpropagation in a wide variety of applications.

The gap between the AD community and the neural network community reminds me of a split I
once saw between some people making aircraft engines and people making aircraft bodies. When the
engine people work on their own, without integrating their work with the airframes, they will find only
limited markets for their product. The same goes for airframe people working alone. Only when the engine
and the airframe are combined together, into an integrated product, can we obtain a real airplane – a
product of great power and general interest.
 In the same way, research from the AD stream and from the neural network stream could be
combined together to yield a new kind of modular, integrated software package which would integrate

1 National Science Foundation, room 675, Arlington VA 22230. pwerbos@nsf.gov. The views herein are
those of the author, not the official views of NSF; however – as work done by a government employee on
government time, it is in the open government domain.

commands to develop dual subroutines together with new more general-purpose systems or structures
making use of these dual subroutines.

At the AD2004 conference, some people asked why AD is not used more in areas like economics
or control engineering, where fast closed-form derivatives are widely needed. One reason is that the proven
and powerful tools in AD today mainly focus on differentiating C programs or FORTRAN programs, but
good economists only rarely write their models in C or in FORTRAN. They generally use packages such as
Troll or TSP or SPSS or SAS which make it easy to perform statistical analysis on their models.
Engineering students tend to use MatLab. Many engineers are willing to try out very complex designs
requiring fast derivatives, when using neural networks but not when using other kinds of nonlinear models,
simply because backpropagation for neural networks is available “off the shelf” with no work required on
their part. A more general kind of integrated software system, allowing a wide variety of user-specified
modeling modules, and compiling dual subroutines for each module type and collections of modules, could
overcome these barriers. It would not be necessary to work hard to wring out the last 20 percent reduction
in run time, or even to cope with strange kinds of spaghetti code written by users; rather, it would be
enough to provide this service for users who are willing to live with natural and easy requirements to use
structured code in specifying econometric or engineering models, etc. Various types of neural networks and
elastic fuzzy logic[8] should be available as choices, along with user-specified models. Methods for
combining lower-level modules into larger systems should be part of the general-purpose software package.

The remainder of this paper will expand these points and – more importantly – provide references
to technical details. Section 2 will discuss the motivation and early stages of my own strand of the history.
Section 3 will summarize the types of backwards differentiation capability we have developed and used.
For the AD community, the most important benefit of this paper may be the new ways of using the
derivatives in various applications. However, for reasons of space, I will weave the discussion of those
applications into sections 2 and 3, and provide citations and URLs to more information.

This paper does not represent the official views of NSF. However, many parts of NSF would be
happy to receive more proposals to strengthen this important emerging area of research. For example,
consider the programs listed at www.eng.nsf.gov.ecs. Success rates all across the relevant parts of NSF
were cut to about 10% in fiscal year 2004, but more proposals in this area would still make it possible to
fund more work in it.

2 Motivations and Early History

My personal interest in backwards differentiation started in the 1960s, as an outcome of my desire to better
understand how intelligence works in the human brain.

This goal still remains with me today. NSF has encouraged me to explain more clearly the same
goals which motivated me in the 1960s! Even though I am in the Engineering Directorate of NSF, I ask my
panelists to evaluate each proposal I receive in CNCI by considering (among other things) how much it
would contribute to our ability to someday understand and replicate the kind of intelligence we see in the
higher levels of the brains of all mammals.

More precisely, I ask my panelists to treat the ranking of proposals as a kind of strategic
investment decision. I urge them to be as tough and as complete about focusing on the bottom line as any
industry investor would be, except that the bottom line, the objective function, is not dollars. The bottom
line is the sum of the potential benefits to fundamental scientific understanding, plus the potential broader
benefits to humanity. The emphasis is on potential – the risk of losing something really big if we do not
fund a particular proposal. The questions “What is mind? What is intelligence? How can we replicate and
understand it as a whole system?” are at the top of my list of what to look for in CNCI. But we are also
looking for a wide spectrum of technology applications of strategic importance to the future of humanity.
See my chapter in [9] for more details and examples.

Before we can reverse-engineer brain-like intelligence as a kind of computing system, we need to
have some idea of what it is trying to compute. Figure 1 illustrates what that is:

Figure 1. The brain as a whole system is an intelligent controller.

Figure 1 reminds us of simple, trivial things that we all knew years ago. But sometimes it pays to think
about simple things in order to make sure that we understand all of their implications.

To begin with, Figure 1 reminds us that the entire output of the brain is a set of nerve impulses that
control actions, sometimes called “squeezing and squirting” by neuroscientists. The entire brain is an
information processing or computing device. The purpose of any computing device is to compute its
outputs. Thus the function of the brain as a whole system is to learn to compute the actions which best serve
the interests of the organism over time. The standard neuroanatomy textbook by Nauta [10] stresses that we
cannot really say which parts of the brain are involved in computing actions, since all parts of the brain
feed into that computation. The brain has many interesting capabilities for memory and pattern recognition,
but these are all subsystems or even emergent dynamics within the larger system. They are all subservient
to the goal of the overall system – the goal of computing effective actions, ever more effective as the
organism learns. Thus the design of the brain as a whole, as a computational system, is within the scope of
what we call “intelligent control” in engineering. When we ask how the brain works, as a functioning
engineering system, we are asking how a system made up of neurons is capable of performing learning-
based intelligent control. This is the species of mathematics that we have been working to develop – along
with the subsystems and tools that we need to make it work as an integrated, general-purpose system.
 Many people read these words, look at Figure 1, and immediately worry that this approach may be
a challenge to their religion. Am I claiming that all human consciousness is nothing but a collection of
neurons working like a conventional computer? Am I assuming that there is nothing more to the human
mind – no “soul?” In fact, this approach does not require that one agree or disagree with such statements.
We need only agree that mammal brains actually do exist, and do have interesting and important
computational capabilities. People working in this area have a great diversity of views on the issue of
“consciousness.” Because we do not need to agree on that complex issue, in order to advance this
mathematics, I will not say more about my own opinions here. Those who are interested in those opinions
may look at [1,11,12], and at the more detailed technical papers which they in turn cite.

 Self-Configuring Hardware Modules

 Coordinated Software Service Components

Figure 2. Cyberinfrastructure: The Entire Web From Sensors to Decisions/Action/Control
Designed to Self-Heal, Adapt and Learn to Maximize Overall System Performance

Reinforcement

Sensory Input
Actions

Coordinated

Figure 2 depicts another important goal which has emerged in research at NSF and at other agencies such
as the Defense Advanced Projects Agency (DARPA) and the Department of Homeland Security (DHS)
Critical Infrastructure Protection efforts. More and more, people are interested in the question of how to
design a new kind of “cyberinfrastructure” which has the ability to integrate the entire web of information
flows from sensors to actuators, in a vast distributed web of computations, which is capable over time to
learn to optimize the performance of the actual physical infrastructure which the cyberinfrastructure
controls. DARPA has used the expression “end-to-end learning” to describe this. Yet this is precisely the
same design task we have been addressing all along, motivated by Figure 1! Perhaps we need to replace the
word “reinforcement” by the word “current performance evaluation” or the like, but the actual
mathematical task is the same.
 Many of the specific computing applications that we might be interested in working on can best be
seen as part of a larger computational task, such as the tasks depicted in figure 1 or figure 2. These tasks
can provide a kind of integrating framework for a general purpose software package – or even for a hybrid
system composed of hardware and software together. See www.eng.nsf.gov/ecs for a link to some recent
NSF discussions of cyberinfrastructure.

S pecific
P rob lem
S olve rs

G ene ra l P rob lem So lve rs M cC u lloch
P itts N eu ron

L o gica l
R eason in g
S ystem s

R e in fo rcem ent
L earn ing

W idro w L M S
& Percep tron s

E xp ert System s

M in sk y

B ackp rop ‘7 4

P sy cho log is ts , PD P B ooks

C o m pu tatio nal
N euro , H ebb
Lea rn in g Fo lk s

IE E E IC N N 1987 : B irth o f a “U n ified” D isc ip line

Figure 3. Where did ANNs and Backpropagation Come From?

Figure 3 summarizes the origins of backpropagation and of Artificial Neural Networks (ANNs). The figure
is simplified, but even so, one could write an entire book to explain fully what is here.
 Within the ANN field proper, it is generally well-known that backpropagation was first spelled out
explicitly (and implemented) in my 1974 Harvard PhD thesis[1]. (For example, the IEEE Neural Network
Society cited this in granting me their Pioneer Award in 1994.)
 Many people assume that I developed backpropagation as an answer to Marvin Minsky’s classic
book Perceptrons [13]. In that book, Minsky addressed the challenge of how to train a specific type of
ANN – the Multilayer Perceptron (MLP) – to perform a task which we now call Supervised Learning,
illustrated in Figure 4.

Figure 4. What a Supervised Learning System (SLS) Does

In supervised learning, we try to learn the nonlinear mapping from an input vector X to an output vector Y,
when given examples {X(t), Y(t), t=1 to T} of the relationship. There are many varieties of supervised
learning, and it remains a large and complex area of ANN research to this day, with links to statistics,
machine learning, data mining, and so on.
 Minsky’s book was best known for arguing that (1) we need to use an MLP with a hidden layer
even to represent simple nonlinear functions such as the XOR mapping; and (2) no one on earth had found
a viable way to train MLPs with hidden layers good enough even to learn such simple functions. Minsky’s
book convinced most of the world that neural networks were a discredited dead-end – the worst kind of
heresy. Widrow has stressed that this pessimism, which squashed the early “perceptron” school of AI,
should not really be blamed on Minsky. Minsky was merely summarizing the experience of hundreds of
sincere researchers who had tried to find good ways to train MLPs, to no avail. There had been islands of
hope, such as the algorithm which Rosenblatt called “backpropagation” (not at all the same as what we now
call backpropagation!), and Amari’s brief suggestion that we might consider least squares as a way to train
neural networks (without a discussion of how to get the derivatives, and with a warning that he did not
expect much from the approach). But the pessimism at that time became terminal.
 In the early 1970s, I did in fact visit Minsky at MIT. I proposed that we do a joint paper showing
that MLPs can in fact overcome the earlier problems if (1) the neuron model is slightly modified [4] to be
differentiable; and (2) the training is done in a way that uses the reverse method, which we now call
backpropagation [1-2] in the ANN field. But Minsky was not interested [14]. In fact, no one at MIT or
Harvard or any place else I could find was interested at the time.
 There were people at Harvard and MIT then who had used, in control theory, a method very
similar to the first-generation adjoint method, where calculations are carried out backwards from time T to
T-1 to T-2 and so on, but where derivative calculations at any time are based on classical forwards
methods. (In [1], I discussed first-generation work by Jacobsen and Mayne[15], by Bryson and Ho[16], and
by Kashyap, which was particularly relevant to my larger goals.) Some later debunkers have in fact argued
that backpropagation was essentially a trivial and obvious extension of that earlier work. But in fact, some
of the people doing that work actually controlled computer resources at Harvard and MIT at that time, and
would not allow those resources to be used to test the ability of true backpropagation to train ANNs for
supervised learning; they did believe there was enough evidence in 1971 that true backpropagation could
possibly work.
 In actuality, the challenge of supervised learning was not what really brought me to develop
backpropagation. That was a later development. My initial goal was to develop a kind of universal neural
network learning device to perform a kind of “Reinforcement Learning” (RL) illustrated in Figure 5.

SLS
X(t)
inputs

Predicted Y(t)
outputs

Actual Y(t)
targets

RLS

External
Environment

or “Plant”
“utility” or “reward”
or “reinforcement”

U(t)

u(t)
actions

X(t)
sensor inputs

Figure 5. A Concept of Reinforcement Learning. Note that the environment and the RLS
 are both assumed to have memory at time t of the previous time t-1, and that

the goal of the RLS is to learn how to maximize the sum of expected U (<U>) over all future time t.

Ironically, my efforts here were inspired in part by an earlier paper of Minsky [17], where he proposed
reinforcement learning as a pathway to true general-purpose AI. Early efforts to build general-purpose RL
systems were no more successful than early efforts to train MLPs for supervised learning, but in 1968 [18] I
proposed what was then a new approach to reinforcement learning. Because the goal of RL is to maximize
the sum of <U> over future time, I proposed that we build systems explicitly designed to learn an
approximation to dynamic programming, the only exact and efficient method to solve such an optimization
problem in the general case. The key concepts of classical dynamic programming are shown in Figure 6.
 In classical dynamic programming, the user supplies the utility function to be maximized (this
time as a function of the state x(t)!) and a stochastic model of the environment used to compute the
expectation values indicated by angle brackets in the equation. The mathematician then finds the function J
which solves the equation shown in Figure 6, a form of the Bellman equation. The key theorem is that
(under the right conditions) any system which chooses u(t) to solve the simple, static maximization
problem within that equation will automatically provide the optimal strategy over time to solve the difficult
problem in optimization over infinite time. See [9,19,20] for more complete discussions, including
discussion of key concepts and notation in figures 6 and 7.

Figure 6. The key concepts in classical dynamic programming

My key idea was to use a universal function approximator – like a neural network – to approximate the
function J or something very similar to it, in order to overcome the curse of dimensionality which keeps
classical dynamic programming from being useful on large problems.
 In 1968, I proposed that we somehow imitate Freud’s concept of a backwards flow of credit
assignment, flowing back from neuron to neuron, in order to implement this idea. I did not really provide a
practical way to do this, but in my thesis proposal to Harvard in 1972, I proposed the following design,
including the flow chart (with less modern labels) and the specific equations for how to use the reverse
method to calculate the required derivatives indicated by the dashed lines:

Dynamic programmingDynamic programming

Model of realityModel of reality Utility function UUtility function U

Secondary, or strategic utility function JSecondary, or strategic utility function J

)(

)1/())1(())(),(())((

tu

rtxJtutxUMaxtxJ +>++<=

C r i t i c

M o d e l

A c t io n

J (t+ 1)

R (t+ 1)

u (t)

X (t)

R (t)

.

Figure 7. RLS design proposed to Harvard in my 1972 thesis proposal

I explained the reverse calculations using a combination of intuition and examples and the ordinary chain
rule, though it was almost exactly a translation into mathematics of things that Freud had previously
proposed in his theory of psychodynamics! Because of my difficulties in finding support for this kind of
work, I printed up many copies of this thesis proposal and distributed them very widely.
 In Figure 3, all three boxes were assumed to be filled in with ANNs – with ordered computational
systems containing parameters or weights that would be adapted so as to approximate the behavior called
for by the Bellman equation. For example, in order to make the actions u(t) actually perform the
maximization which appears in the Bellman equation, we needed to know the derivatives of J with respect
to every action variable (actually, every parameter in the action network). The derivatives would provide a
kind of specific feedback to each parameter, to signal whether the parameter should be increased or
decreased. For this reason, I called the reverse method “dynamic feedback” in [1]. The reverse method was
needed to compute all the derivatives of J with respect to all of the parameters of the action network in just
one sweep through the system. At that time, I focused on the case where the utility function U depends only
on the state x, and not on the current actions u. I discussed how the reverse calculations could be
implemented in a local way, in a distributed system of computing hardware like the brain.
 Harvard responded as follows to this proposal and to later discussions. First, they would not allow
ANNs as such to be a major part of the thesis, since I had not found anyone willing to act as a mentor for
that part. (I put a few words into chapter 5 to specify essential ideas, but no more.) Second, they said that
backwards differentiation was important enough by itself for a PhD thesis, and that I should postpone the
reinforcement learning concepts for research after the PhD. Third, they had some skepticism about reverse
differentiation itself, and they wanted a really solid, clear, rigorous proof of its validity in the general case.
Fourth, they agreed that this would be enough to qualify for a PhD if, in addition, I could show that the use
of the reverse method would allow me to use more sophisticated time-series prediction methods which, in
turn, would lead to the first successful implementation of Karl Deutsch’s model of nationalism and social
communications [21]. All of this happened [1], and is a natural lead-in to the next section.
 The computer work in [1] was funded by the Harvard-MIT Cambridge Project, funded by
DARPA. The specific multivariate statistical tool described in [1], made possible by backpropagation, was
included as a general command in the MIT version of the TSP package in 1973-74 and, of course,
described in the MIT documentation. The TSP system also included a kind of small compiler to convert
user-specified formulas into Polish form for use in nonlinear regression. By mid-1974 we had almost
finished coding a new set of commands (almost exactly paralleling [1]) which: (1) would allow a TSP user
to specify a “model” as a set of user-specified formulas; (2) would consolidate all the Polish forms into a
single compact structure; (3) would provide the obvious kinds of capabilities for testing a whole model,
similar to capabilities in Troll; and (4) would automatically create a reverse code for use in prediction and
optimization over time. The complete system in FORTRAN was almost ready for testing in mid-1974, but
there was a complete reorganization of the Cambridge Project that summer, reflecting new inputs from
DOD and important improvements in coding standards based on PL/1. As I result, I graduated and moved
on before the code could be moved into the new system.

3 Types of Differentiation Capability We Have Developed

3.1 Initial (1974) Version of the Reverse Method

My thesis showed how to calculate all the derivatives of a single computed quantity Y with respect to all of
the inputs and parameters which fed into that computation in just one sweep backwards through the system.
See Figure 8.

Figure 8. Concept of the Reverse Method

The first version of the reverse method required that the computational system be what I called an “ordered
system.” My definition of an “ordered system” in chapter 2 of [1] was almost identical to the definition of
an explicit computational algorithm given by Louis Rall in his chapter in this book. At each time when we
compute the scalar result Y, we need to be able to specify a sequence of intermediate computations f1
through fN which lead up to Y=fN+1, where each computation is specified as a differentiable (and hopefully
simple) function of what preceded it. In practice, these computations may form a kind of lattice of
computations performed in parallel. However, that is just a useful and important special case of the general
mathematics.
 In order to specify and prove the validity of the reverse method, in the general case, I needed to
define the concept of an ordered derivative. As shown in Figure 8, the reverse method calculates the entire
set of ordered derivatives of Y with respect to the set of inputs x1 through xn.
 Many people at AD2004 asked how the reverse method could be better taught in schools. I would
propose that the very first course in calculus that teaches partial derivatives should teach that there are at
least three different types of partial derivative. The three different types make different assumptions, and
need to be treated as distinct cases with distinct rules, in order to avoid confusion in the practical use of
partial derivatives. I have seen enough confusion about partial derivatives in the study of complex systems,
all across social sciences and basic science and engineering, that I believe it would save a lot of time in the
end to be clear about these distinctions from the first.
 The three basic concepts are: (1) the algebraic partial derivative, whose value (as an algebraic
expression) depends on the explicit algebraic expression for the quantity being differentiated; (2) the field
or functional partial derivative, whose value is well-defined only for a specific set of coordinate variables
or input vector; and (3) the ordered derivative, which represents the total change in a later quantity which
results when the value of an earlier quantity is changed, in an ordered system. Ordered derivatives occur in
practice across all fields of science, but a confusing multitude of ad hoc terms and partial methods have
been developed to deal with them. Again, it would save time to deal with the concept in a more unified and
general way in basic calculus courses.

S Y S T E M

Y , a sca lar resu lt

x 1

x n

.

.

.

∂ +Y
∂x K

{ }
W

1
2

3 =
∂
∂
z

z
4

1

3 =
∂
∂

z

z

7
1

2

2

3

1

3

1

3 =
∂
∂

∂
∂+

∂
∂=

∂
∂ ++

z

z

z

z

z

z

z

z

i

j

j

n
n

iji

n

z

z

z

z

z

z

∂
∂

∂
∂=

∂
∂ +

+=

+

∑
1

z3

z2

z1

3

1

4

Figure 9. The Chain Rule for Ordered derivatives

Figure 9 illustrates the relation between direct or algebraic partial derivatives and ordered derivatives, and
gives the chain rule for ordered derivatives. In my view, the chain rule for ordered derivatives should be
taught in second-year calculus classes. The proof of the chain rule in chapter 2 of [1] (reprinted in [6]) is
the proof of the validity of the reverse method. The reverse method is the use of this chain rule for the case
of ordered systems. Notice that the direct or algebraic derivative of z3 with respect to z1 is only 4, because
that is the direct impact along the outer arrow; however the total or ordered derivative is 7.
 For a system with n inputs as in Figure 8, the reverse method allows one to compute all the
required derivatives exactly in 1 pass, instead of the n passes needed with older methods. Thus it reduces
costs by a factor of n. The person funding my work in the late 1970s argued that reductions in
computational cost were growing less and less important, as computer costs fell. I replied that greater
computing capacity is properly leading us to build ever larger models and modeling systems and control
systems; thus as n grows larger and larger, the cost reduction becomes more and more important. For
systems as large as the brain, the cost reduction is indispensable. The work presented in Wunsch’s chapter
of this book, applying the reverse method to a large climate models, now gives a good example of that.

3.2 Extensions of the Reverse Method (1974-86)

During 1974-1986, I developed three kinds of extension to the reverse method: (1) extensions to calculate
derivatives through “recurrent” or “implicit” systems; (2) extensions to calculate selected higher-order
derivatives or even derivatives of eigenvalues or eigenvectors; and (3) extensions to manage block
structured or modular computer systems. I used and published the method in several specialized areas – but
interest became much broader after a detailed 1980 DOE/EIA Validation Report summarizing their
capabilities and a condensed summary [4] which we distributed very widely

3.2.1 Recurrent or Implicit Systems

The neural network community talks a lot about “feedforward networks,” which sound identical at first to
“ordered systems.” A feedforward network would contain N elementary processing elements or “neurons,”
like the functions fk above. At each time, the network would take n inputs (as in Figure 8) and work
forward step by step to compute its outputs. There may be more than one output, but still it is an ordered
system. Neural network people often picture such a network as a kind of computational graph made up of
circles and arrows (for example, see [4] or www.nd.com). Each circle represents the calculation of an
intermediate variable, and the arrows flowing into any circle show us which earlier results are directly used
in that calculation.
 A “recurrent network,” in neural network language, is a network which cannot be ordered, because
the graph contains arrows “pointing backwards” (or looping back to the same level they start in.) The idea
of recurrent or recursive neural networks was known back in Minsky’s time[13]. The commonest form of
recurrence is a loop from neuron number k back to itself.
 The literature on recurrent networks has become very confused and often inaccurate, in part
because there are different interpretations of what it means when people insert a backwards arrow into the
computational graph. There are three common versions of what a backwards loop might mean: (1) a time-
lagged flow of information – for example, when the calculation of neuron k at time t depends on the
previous output at time t-1 of the same neuron; (2) an instantaneous flow of information, such that the
network must be interpreted as an implicit system, as a system of nonlinear simultaneous equations such
that the output of the system is defined as the result of solving those equations; or (3) a flow of information
in continuous time, governed by ordinary differential equations (ODE).
 I have defined a Time-Lagged Recurrent Network (TLRN) as a feedforward system augmented by
the first kind of recurrence. I have defined a Simultaneous Recurrent Network (SRN) as a feedforward

system augmented by the second kind of recurrence. The most general case, for systems based on discrete
time, is a hybrid TLRN/SRN, where both kinds of recurrence are present. I have worked at times with the
ODE versions [7], but at the present time this usually causes more trouble than it is worth (except in certain
stability proofs in control [20]). The current lack of reliable software to handle TLRN/SRN hybrids
effectively is a major barrier to progress in making better use of ANNs, in my view. Time-lagged
recurrence and simultaneous recurrence each provide fundamentally different kinds of modeling or
computational capability. For maximum (brain-like) overall capability, it is essential to be able to combine
these two capabilities without blurring the distinction between them.
 In actuality, TLRNs are still ordered systems, if one considers the entire web of calculations across
time. In later years, I defined the term “backpropagation through time”(BPTT) [3] to refer to the use of
backpropagation across an ordered space-time system. Of course, the cost of a complete and exact
backwards sweep to get all the derivatives is still of the same order as the cost of a forwards sweep. BPTT
was implemented in [1], and numerous examples were given of ways to use it. TLRNs trained using BPTT,
along with sophisticated ways of using the derivatives, are the core of some of the most powerful
applications of ANNs today. For example, the work by Feldkamp, Prokhorov, and others at Ford Research
contains many examples of the effective use of TLRNs.
 True implicit systems are a more difficult case. Perhaps the easiest way to think about implicit
systems is to use the definition of SRN given in section 3.2.4 of [19], with minor revision. An SRN may be
defined as a vector-valued mapping F:

),(WXFY = (1)
defined as the result of applying a “read-out function” g:

),,()(WXygY ∞= (2)

to the converged value y(∞) of a vector y which we update by some iteration rule:

),,()()1(WXyfy nn =+
 , (3)

where f is a feedforward system, and W is a set of weights or parameters, together with some procedure for
determining the initial iterate y(0). I sometimes call f the “feedforward core” of the SRN.
 In 1980, soon after starting work for the Office of Energy Information Validation at the Energy
Information Administration (EIA) of the Department of Energy, I encountered two examples of such
implicit systems: (1) an econometric model of the natural gas industry [7], which included time-lagged
effects but was defined as a simultaneous-equation system, like most standard econometric models; and (2)
the Long-Term Energy Analysis Package (LEAP)[5], which was a large simultaneous-equation system
operating forwards and backwards through time. I had responsibility for managing two large contracts
which included sensitivity analysis of such models, one at MIT [26] (for econometric models) and one at
Oak Ridge National Laboratories (ORNL) evaluating LEAP.
 The ORNL group had studied the best current literature on the first-generation adjoint sensitivity
methods, some of which they forwarded to me. Extending that approach, they calculated “sensitivity
coefficients” (ordered derivatives) for LEAP, by calculating the Jacobian of f, in effect, and iterating over
the gradient of equation 3.
 Looking at this work, I realized immediately that I could combine their approach to addressing the
simultaneous equations aspect, together with the use of the reverse method applied to the feedforward core
in order to avoid Jacobian calculations, and together with BPTT to handle the time-lagged effects in a
normal econometric model. I implemented this new unified method as follows. First, I translated the
current EIA model of natural gas markets and natural gas regulation from FORTRAN into a model in the
Troll system. (This took some time, but was much appreciated by EIA management, because it made it
much easier for them to know precisely what was assumed inside this model.) Then I hand-coded the dual
or adjoint code to go with the model, as another “model” in Troll, so that I could quickly compute the
sensitivity of any model result to all of the many inputs and parameters of the system. The results were
written up in an EIA report “published” as an energy validation report, distributed within DOE and ORNL
and a few other places, and theoretically distributed to the general public. The resulting journal article [7]
was delayed due to the (verified) finding that the predicted residential gas price could vary by $1 or more,
in response to changes of only .001 in one of the elasticity parameters. The group which I managed at
ORNL soon after became a primary source for the second-generation adjoint sensitivity methods. The
person I exchanged papers with the most in this group retired after making a large amount of money on the
stock market, using neural network methods to guide his investments.

 The method described in the final section of [7] is very close to the “white box method for implicit
systems” as now used in the AD community. The presentation of the method in chapters 3 and 10 of [19]
may be somewhat easier to work with than [7].
 SRNs are not widely used yet in ANN technology, even though many important applications will
require them for real success. Part of the problem is a lack of suitable software and a need for research into
how to speed up the learning. (Kozma, Rilin, and I have recently had preliminary results cutting learning
time by a factor of ten, compared with [22,23], using the simplest partial version of some new approaches.)
Another part of the problem is a widespread lack of understanding of what SRNs can offer, if properly
trained.
 Most ANN users know that simple MLPs are “universal approximators.” Andrew Barron of Yale
[24] has proven theorems about how many parameters are needed to achieve a given level of
approximation accuracy, when approximating smooth functions. In essence, he has proven that the required
complexity grows exponentially with the number of inputs for linear basis function approximators (such as
lookup tables, Taylor series, or radial basis function approximators). However, it grows much more slowly
for the simple MLP. Many neural network people conclude: if MLPs are so effective in approximating any
input-output mapping, why bother with the extra complexity of an SRN?
 However, many tasks critical to intelligent systems require that we approximate nonsmooth
functions or functions with high computational complexity. Minsky’s “connectedness” function [13] is one
example. Evaluating a position in a game like Go is another example. The SRN provides a kind of Turing-
like capability [19] that ensures it has the most general kind of representation ability we need in practice,
and we often do need it.
 To try to demonstrate this, Pang and I [22,23] showed how a simple SRN could learn to solve a
kind of “generalized maze navigation” task, where MLPs and the Simple Recurrent Networks later
proposed by psychologists both failed very badly. In [23] I showed how an SRN trained on 6 easy mazes
could steadily improve its performance on 6 hard mazes on which it was never trained. In [22], we
exhaustively discussed the 5 major approaches to computing the derivatives needed to train an SRN
structure (4 applicable to TLRNs as well). We actually used the “black box” approach in this early
demonstration. The black box approach – treating the iterations of equation 3 as if they were time points,
and using BPTT – takes more memory than the “white box” approach, but it was simple and exact, and did
not lead into the tricky pitfalls of the white box method discussed at AD 2004.
 In the work of [22,23], we used a special kind of SRN, a “cellular SRN,” suitable for situations
where the inputs come from a kind of two-dimensional grid with translational symmetry. More recently I
have developed and patented a more general special case of SRN, called an ObjectNet, for situations where
the inputs may come from a more general class of relational networks (such as the state of electric power
grids). ObjectNets can be used to train a single network to learn from a training set consisting of data from
different power grids with different topologies and different numbers of state variables – and yet they are
still an inherently distributed computational structure, like the cellular SRN.
 One may also ask: how could the brain calculate the derivatives it needs to train time-lagged
recurrences, since it cannot memorize its entire life history as one time series, and it does not seem to
sweep back through time in the same way that BPTT does? In [19,22], we describe an approach to
approximating the required derivatives in forwards time, called the “Error Critic.” Also, when systems need
to learn over very long time intervals T, there may be a close relation between the kinds of multi-scale time
representation we need for intelligent control [25] and the kind we need for memory management or
“checkpointing.” As a simple example, if T=2n, we could live with only n “memory records” in an exact
BPTT, by allocating one record to hold T/2, one to hold 3T/4 initially but later T/4, and so on, in a scheme
similar to binary search. The brain may not be so limited in its memory capacity, but the organization of its
information may lead to some interesting parallels.

3.2.2 Modular Structure, Higher-Order Derivatives and Eigenvalues

Up to now, I discussed how to calculate the ordered first derivatives of a scalar quantity of interest Y as
depicted in Figure 8, for systems which are ordered (section 3.1) or recurrent (3.2.1). But what if the system
of interest has more than one output of interest? What if we need higher-order derivatives? For reasons of
space, I cannot present all the extensions I have worked with, but I can give some examples and citations.
 First consider the example of Figure 4. A supervised learning system usually has several outputs

Y1 through Yn, forming a vector Y. How can we apply the capability shown in Figure 8 where there is only
a single output of interest?
 The SLS shown in Figure 8 may be a neural network or any other system which may be
represented by a vector-valued function F:

)),(()(ˆ WtXFtY = , (4)

where W represents the set {Wα} of weights or parameters to be adapted. There are many ways to adapt
such systems. In “vanilla backpropagation” or in “basic backpropagation” [2,3] in real-time, we adapt the
weights Wα so as to reduce the square error of the prediction of Y(t) at the current time

 ()∑
=

−=
n

i
ii tYtYtE

1

2

2
1)()(ˆ)(. (5)

For truly brain-like capability, it is very important to modify this approach by adding penalty terms (e.g.
like those of Phatak), and by accounting for the related issues addressed by various authors involving loss
functions[26], robustness[27], empirical risk [28] or dynamic robustness [1,19,29] and by allowing for a
kind of interplay between learning from current experience and learning from memory as in what I have
called syncretism [19], which is related to Atkeson’s memory-based learning.
 In basic backpropagation, the scalar quantity of interest is E(t). The system to be differentiated is
not the SLS itself but the combination of the SLS and equation 5. Thus we can apply the reverse method
directly. As a practical matter, it is important to write clean modular code here. Modular code becomes ever
more important as we work our way up to more complex applications.
 In writing modular code, we would like to use a name for each variable as close as possible to the
label we use in the mathematical papers that describe the system, but computer languages will not let us use
“∂+E(t)/∂Wα”, for example, as a variable name. Thus I have used the shorthand notation “F_Wα”, for
example, to represent the feedback to the quantity Wα, the ordered derivative of the current quantity of
interest with respect to Wα. (In the AD community, people might use “ad_Wα” instead.)
 For developing a modular version of basic backpropagation [3], I have shown how the reverse
calculations can be split up into two parts. The first part, in the main program, calculates:

 ii

ii

i YY
tY

tE

tY

tE
YF −=

∂
∂=

∂
∂≡

+
ˆ

)(ˆ
)(

)(ˆ
)(ˆ_ (6)

for i = 1 to n. Then a dual subroutine, a dual or adjoint to the SLS, works back the implied ordered
derivatives with respect to all of the inputs or weights. (To minimize run costs, we may sometimes code
two versions or entries to the dual subroutine, one of which only calculates feedback to the weights, for
cases where that is all we need.) The dual subroutine inputs the entire set of F_Y variables, but it
implements a single reverse calculation aimed at a single scalar quantity of interest further downstream.
 Only about 12 people have fully implemented structures like Figure 7 so far, because it requires us
to keep track of three main scalar quantities of interest, the specific error measure used in training the
Critic, the error measure used in training the Model, and the estimate of J itself as used to train the Action
network. People who use off-the-shelf neural network software without really understanding the reverse
method find it difficult to keep track of the complexity. Often I explain the system by discussing how to
adapt the three parts in three separate sections, so that I discuss only one error measure in each section.
Many other explanations, examples, and applications appear in [9]. In my parts of [19], I give the more
general case more explicitly, by using dual subroutines in the specification of algorithms, so that a user can
select any mixture of neural networks, elastic fuzzy logic, or user-specified systems of equations for any of
the components. I have sometimes wondered whether I should use notation like FJ_Wα, FEJ_Wα and
FEX_Wα to explicitly describe how systems like Figure 7 require us to consider three quantities of interest
at the same time. In 1986 [30], I described some early ideas for how one might implement capabilities like
this as a user-friendly systems of commands in the SAS system. There are tutorial slides with text which
progress from simple pattern recognition and data mining methods, through to diagnostics and time-series
issues, through to many generations and types of methods for decision and control [31].

Chapter 10 of [19] discusses the issues which arise when we try to train “Models” (as in Figure 7)
which can predict partially observed systems over time, and chapter 13 discusses a stochastic extension (the
“Stochastic Encoder/Decoder/Predictor”) which may be thought of as a kind of nonlinear maximum
likelihood factor analysis system in the special case where the Predictor is set to zero. Backwards
differentiation is essential to making these kinds of complex capabilities workable in realistic computing

systems or in realistic chip-level or distributed hardware implementations. Jose Principe at the University
of Florida (http://www.ece.ufl.edu/facultystaff/principe.html) also has interesting ideas. Feldkamp and
Prokhorov of Ford recently did benchmark studies where even simple TLRNs performed state estimation as
well as more expensive “particle filter” methods and better than Extended Kalman Filters. Still, more work
is needed to unify the pieces needed when unobserved variables are partly continuous and partly discrete.
 As a further example, people sometimes use supervised learning to learn nonlinear relationships in
a statistical way from real observed data, but supervised learning can also be useful as a way to develop a
kind of reduced order model of a more complex model. For example, one may use it to approximate a large
model running on a supercomputer by a neural network model which could fit on the $1-10 neural chip
designed and tested by Raoul Tawel of the Jet Propulsion Laboratory and Mosaix LLC (funded by an NSF
SBIR grant with encouragement from Ford). In such cases, however, you can get better results by
developing an adjoint for the large model as well, so that the training set includes X(t), Y(t), and the
Jacobian of Y(t) with respect to X(t) for each example t. You can minimize the augmented error function:

() ∑ ∑∑
= =

++

=














∂
∂

−
∂
∂

+−=
m

j

n

i j

i

j

i
j

n

i
ii X

Y

X

Y
CtYtYtE

1 1

2

2
1

1

2

2
1

ˆ
)()(ˆ)(, (7)

where the input vector X has m components, and the nonnegative weights Cj can be chosen in various
ways.
I have called this method “Gradient Assisted Learning” (GAL). To minimize this error function, one must
in effect calculate its derivatives, which involve ordered second derivatives. Chapter 10 of [19] discusses
how to do so in some detail. (See also [32].) The easiest general approach is simply to note that the
calculation of E(t) is itself an ordered system, even though some of its intermediate calculations are
motivated by derivative calculation. One can apply the reverse method directly to that ordered system.
Similar issues arise in implementing a control method which I call Globalized Dual Heuristic Programming
(GDHP), where I discussed (less clearly) how to get the second derivatives [4,33,34]. GDHP now seems
most important as a way to handle decision or control problems where the actions u(t) include both discrete
and continuous choices[9]. See [20] for some discussion of stability theory and links to control theory.
 Sensitivity analysis and convergence of large models was a major application when I was at EIA,
calling for many kinds of derivatives for many uses. See [4] and [5] for examples. For example, combining
the reverse method with the Fadeev formulas for derivatives of eigenvalues and eigenvectors yielded
interesting information. All of the methods here can provide important practical information in global
modeling packages, such as one would use for long-range strategic planning where it is important to know
the impact of current decisions or policies on long-term global outcomes, and to generate value measures or
“shadow prices” to guide optimal decisions by tactical or distributed agents.

References

1. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
Ph.D. Thesis, Committee on Applied Mathematics, Harvard U., 1974. Reprinted in its entirety in Werbos,
P.J.: The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political
Forecasting. Wiley, New York (1994).

2. Werbos, P.J.: Backpropagation: Basics and new developments. In Arbib, M. (ed): The Handbook of
Brain Theory and Neural Networks. MIT Press, Cambridge MA, First Edition, (1995).

3. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE, Vol. 78, No. 10,
October 1990. Updated version reprinted in Roots [1].

4. Werbos, P.J., Applications of advances in nonlinear sensitivity analysis. In Drenick, R. and Kozin, F.
(eds): System Modeling and Optimization: Proc. IFIP Conf. (1981). Springer (1982). Reprinted in Roots
[1].

5. Werbos, P.J.: Solving and optimizing complex systems: lessons from the EIA long-term energy model.
In Lev, B. (ed): Energy Models and Studies. North Holland (1983).

6. Werbos, P.J.: Maximizing long-term gas industry profits in two minutes in Lotus using neural network
methods, IEEE Trans. SMC, March/April 1989.

7. Werbos, P.J.: A generalization of backpropagation with application to a recurrent gas market model,
Neural Networks, October 1988.

8 Werbos, P.J.: Elastic fuzzy logic: a better fit to neurocontrol and true intelligence, J. of Intelligent and
Fuzzy Systems , Vol.1, 365-377, 1993. Reprinted and updated in Gupta, M. (ed,): Intelligent Control. IEEE
Press, New York (1995)

9. Si, J., Barto, A.G., Powell, W.B, Wunsch, D. (eds): Handbook of Learning and Approximate Dynamic
Programming (IEEE Press Series on Computational Intelligence). Wiley-IEEE Press, New York (2004)

10. Nauta, W. and Feirtag,M.: Fundamental Neuroanatomy. W.H.Freeman (1986)

11. Werbos, P.J.: What do neural nets and quantum theory tell us about mind and reality? In Yasue, K.,
Jibu, M., Della Senta, T. (eds): No Matter, Never Mind : Proceedings of Toward a Science of
Consciousness : Fundamental Approaches (Tokyo '99). John Benjamins (2002). Also Posted as q-bio.NC
0311006 at arXiv.org (q-bio archives).

12 Werbos, P.J.: From the termite mound to the stars: Meditations on discussions with Ilya Prigogine,
Problems of Nonlinear Analysis in Engineering Systems, No.3(19), vol. 9 (2003). Also Posted as q-bio.PE
0311007 at arXiv.org (q-bio archives).

13 Minsky, M. and Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press,
Cambridge, MA. (1969).

14. Anderson, J., and E.Rosenfeld: Talking Nets. MIT Press, Cambridge MA (1998).

15. Jacobson, D. and Mayne, D.: Differential Dynamic Programming. American Elsevier (1970).

16. Bryson, A. and Ho, Y.C.: Applied Optimal Control. Ginn (1969).

17 Feigenbaum, E.A. and Feldman, J.: Computers and Thought. McGraw-Hill (1963).

18 Werbos, P.J.: The elements of intelligence, Cybernetica (Namur), No.3, 1968.

19. White, D. and Sofge, D. (eds): Handbook of Intelligent Control. Van Nostrand (1992)

20 Werbos, P.J. Stable Adaptive Control Using New Critic Designs, posted as adap-org 9810001 at
arXiv.org (nlin archives), 1998.

21. Deutsch, K.W.: Nationalism and Social Communications. 2nd revised edition, MIT Press, Cambridge
MA. (1966)

22. Pang, X.Z. and Werbos, P.J., Neural network design for J function approximation in dynamic
programming, Math. Modelling and Scientific Computing (a Principia Scientia journal), Vol. 5, No.2/3,
1996. Also posted as adap-org 9806001 at arXiv.org (set “archives” to nlin).

23. Werbos, P.J. and Pang, X.Z.: Generalized maze navigation: SRN critics solve what feedforward or
Hebbian nets cannot. In: Proc. Conf. Systems, Man and Cybernetics (SMC96 Beijing). IEEE, 1996. (An
earlier version appeared in the WCNN96 Proceedings from INNS.)

24. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans.
Info. Theory 39(3) 930-945 (1993)

25 Werbos, P.J.: A Brain-Like Design To Learn Optimal Decision Strategies in Complex Environments, in
Karny, M., Warwick, K. ,Kurkova, V. (eds): Dealing with Complexity: A Neural Networks Approach.
Springer, London (1998). Also in Amari, S. and Kasabov, N. (eds): Brain-Like Computing and Intelligent
Information Systems. Springer (1998). See also international patent application #WO 97/46929, filed June
1997, published Dec.11.

26. Belsley, D.A., Kuh, E. and Welsch, R. E. : Regression Diagnostics : Identifying Influential Data and
Sources of Collinearity (Wiley Series in Probability and Statistics). Wiley (reprinted 2004)

27 Raiffa, H. and Schlaifer, R.: Applied Statistical Decision Theory. Wiley-Interscience; New York, New
Edition (May 15, 2000)

28 Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, 2nd ed. (2000)

29 Werbos, P. and Titus, J.: An empirical test of new forecasting methods derived from a theory of
intelligence: The prediction of conflict in Latin America, IEEE Trans SMC, September 1978

30. Werbos, P.J., Generalized information requirements of intelligent decision-making systems.
In SUGI 11 Proceedings. SAS Institute, Cary NC (1986)

31 See the tutorial posted at http://www.iamcm.org/publications.html. See also the IJCNN04 tutorial posted
under http://ieee-cis.org/edu/, in the multimedia tutorial section.

32 Werbos, P.J.: Backpropagation: Past and future. In: Proc. Int’l Joint Conf. Neural Networks (IJCNN88).
IEEE, New Jersey, 1988.

33 Werbos, P.J., Changes in global policy analysis procedures suggested by new methods of optimization,
Policy Analysis and Information Systems, Vol.3, No.1, June 1979

34 Werbos, P.J., Building and understanding adaptive systems: A statistical/numerical approach to
factory automation and brain research, IEEE Trans. SMC, Jan./Feb. 1987

