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Abstract 
 
Backwards calculation of derivatives – sometimes called the reverse mode, the full adjoint method, or 
backpropagation, has been developed and applied in many fields. This paper reviews several strands of 
history, advanced capabilities and types of application – particularly those which are crucial to the 
development of brain-like capabilities in intelligent control and artificial intelligence. 
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1 Introduction and Summary 
 
Backwards differentiation or “the reverse accumulation of derivatives” has been used in many different 
fields, under different names, for different purposes. This paper will review that part of the history and 
concepts which I experienced directly. More importantly, it will describe how reverse differentiation could 
have more impact across a much wider range of applications. 
 Backwards differentiation has been used in four main ways that I know about: 

(1) In automatic differentiation (AD), a field well covered by the rest of this book. In AD, reverse  
differentiation is usually called the “reverse method” or “the adjoint method.” However, the term “adjoint 
method” has actually been used to describe two different generations of methods. Only the newer 
generation, which Griewank has called “the true adjoint method,” captures the full power of the method. 
 (2) In neural networks, where it is normally called “backpropagation”[1-3]. Surveys have shown 
that backpropagation is used in a majority of the real-world applications of artificial neural networks 
(ANNs). This is the stream of work that I know best, and may even claim to have originated.  
 (3) In hand-coded “adjoint” or “dual” subroutines developed for specific models and applications 
(e.g.[4-7]). 
 (4) In circuit design. Because the calculations of the reverse method are all local, it is possible to 
insert circuits onto a chip which calculate derivatives backwards physically on the same chip which 
calculates the quantit(ies) being differentiated.. Professor Robert Newcomb at the University of Maryland, 
College Park, is one of the people who has implemented such “adjoint circuits.” Some of us believe that 
local calculations of this kind must exist in the brain, because the computational capabilities of the brain 
require some use of derivatives and because mechanisms have been found in the brain which fit this idea. 
 
These four strands of research could benefit greatly from greater collaboration. For example – the AD 
community may well have the deepest understanding of how to actually calculate derivatives and to build 
robust dual subroutines, but the neural network community has worked hard to find many ways of using 
backpropagation in a wide variety of applications.  

The gap between the AD community and the neural network community reminds me of a split I 
once saw between some people making aircraft engines and people making aircraft bodies. When the 
engine people work on their own, without integrating their work with the airframes, they will find only 
limited markets for their product. The same goes for airframe people working alone. Only when the engine 
and the airframe  are combined together, into an integrated product, can we obtain a real airplane – a 
product of great power and general interest. 
  In the same way, research from the AD stream and from the neural network stream could be 
combined together to yield a new kind of modular, integrated software package which would integrate 
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commands to develop dual subroutines together with new more general-purpose systems or structures 
making use of these dual subroutines.  

At the AD2004 conference, some people asked why AD is not used more in areas like economics 
or control engineering, where fast closed-form derivatives are widely needed. One reason is that the proven 
and powerful tools in AD today mainly focus on differentiating C programs or FORTRAN programs, but 
good economists only rarely write their models in C or in FORTRAN. They generally use packages such as 
Troll or TSP or SPSS or SAS which make it easy to perform statistical analysis on their models. 
Engineering students tend to use MatLab. Many engineers are willing to try out very complex designs 
requiring fast derivatives, when using neural networks but not when using other kinds of nonlinear models, 
simply because backpropagation for neural networks is available “off the shelf” with no work required on 
their part. A more general kind of integrated software system, allowing a wide variety of user-specified 
modeling modules, and compiling dual subroutines for each module type and collections of modules, could 
overcome these barriers. It would not be necessary to work hard to wring out the last 20 percent reduction 
in run time, or even to cope with strange kinds of spaghetti code written by users; rather, it would be 
enough to provide this service for users who are willing to live with natural and easy requirements to use 
structured code in specifying econometric or engineering models, etc. Various types of neural networks and 
elastic fuzzy logic[8] should be available as choices, along with user-specified models. Methods for 
combining lower-level modules into larger systems should be part of the general-purpose software package. 

The remainder of this paper will expand these points and – more importantly – provide references 
to technical details. Section 2 will discuss the motivation and early stages of my own strand of the history. 
Section 3 will summarize the types of backwards differentiation capability we have developed and used.   
For the AD community, the most important benefit of this paper may be the new ways of using the 
derivatives in various applications. However, for reasons of space, I will weave the discussion of those 
applications into sections 2 and 3, and provide citations and URLs to more information.  

This paper does not represent the official views of NSF. However, many parts of NSF would be 
happy to receive more proposals to strengthen this important emerging area of research. For example, 
consider the programs listed at www.eng.nsf.gov.ecs. Success rates all across the relevant parts of NSF 
were cut to about 10% in fiscal year 2004, but more proposals in this area would still make it possible to 
fund more work in it. 
 
2 Motivations and Early History 
 
My personal interest in backwards differentiation started in the 1960s, as an outcome of my desire to better 
understand how intelligence works in the human brain. 

This goal still remains with me today. NSF has encouraged me to explain more clearly the same 
goals which motivated me in the 1960s! Even though I am in the Engineering Directorate of NSF, I ask my 
panelists to evaluate each proposal I receive in CNCI by considering (among other things) how much it 
would contribute to our ability to someday understand and replicate the kind of intelligence we see in the 
higher levels of the brains of all mammals.  

More precisely, I ask my panelists to treat the ranking of proposals as a kind of strategic 
investment decision. I urge them to be as tough and as complete about focusing on the bottom line as any 
industry investor would be, except that the bottom line, the objective function, is not dollars. The bottom 
line is the sum of the potential benefits to fundamental scientific understanding, plus the potential broader 
benefits to humanity. The emphasis is on potential – the risk of losing something really big if we do not 
fund a particular proposal. The questions “What is mind? What is intelligence? How can we replicate and 
understand it as a whole system?” are at the top of my list of what to look for in CNCI. But we are also 
looking for a wide spectrum of technology applications of strategic importance to the future of humanity. 
See my chapter in [9] for more details and examples. 

Before we can reverse-engineer brain-like intelligence as a kind of computing system, we need to 
have some idea of what it is trying to compute. Figure 1 illustrates what that is: 



 
Figure 1. The brain as a whole system is an intelligent controller. 

 
Figure 1 reminds us of simple, trivial things that we all knew years ago. But sometimes it pays to think 
about simple things in order to make sure that we understand all of their implications. 

To begin with, Figure 1 reminds us that the entire output of the brain is a set of nerve impulses that 
control actions, sometimes called “squeezing and squirting” by neuroscientists. The entire brain is an 
information processing or computing device. The purpose of any computing device is to compute its 
outputs. Thus the function of the brain as a whole system is to learn to compute the actions which best serve 
the interests of the organism over time. The standard neuroanatomy textbook by Nauta [10] stresses that we 
cannot really say which parts of the brain are involved in computing actions, since all parts of the brain 
feed into that computation. The brain has many interesting capabilities for memory and pattern recognition, 
but these are all subsystems or even emergent dynamics within the larger system. They are all subservient 
to the goal of the overall system – the goal of computing effective actions, ever more effective as the 
organism learns. Thus the design of the brain as a whole, as a computational system, is within the scope of 
what we call “intelligent control” in engineering. When we ask how the brain works, as a functioning 
engineering system, we are asking how a system made up of neurons is capable of performing learning-
based intelligent control. This is the species of mathematics that we have been working to develop – along 
with the subsystems and tools that we need to make it work as an integrated, general-purpose system. 
 Many people read these words, look at Figure 1, and immediately worry that this approach may be 
a challenge to their religion. Am I claiming that all human consciousness is nothing but a collection of 
neurons working like a conventional computer? Am I assuming that there is nothing more to the human 
mind – no “soul?” In fact, this approach does not require that one agree or disagree with such statements. 
We need only agree that mammal brains actually do exist, and do have interesting and important 
computational capabilities. People working in this area have a great diversity of views on the issue of 
“consciousness.” Because we do not need to agree on that complex issue, in order to advance this 
mathematics, I will not say more about my own opinions here. Those who are interested in those opinions 
may look at [1,11,12], and at the more detailed technical papers which they in turn cite.  
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Figure 2. Cyberinfrastructure: The Entire Web From Sensors to Decisions/Action/Control 
Designed to Self-Heal, Adapt and Learn to Maximize Overall System Performance 
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Figure 2 depicts another important goal which has emerged in research at NSF and at other agencies such 
as the Defense Advanced Projects Agency (DARPA) and the Department of Homeland Security (DHS) 
Critical Infrastructure Protection efforts. More and more, people are interested in the question of how to 
design a new kind of “cyberinfrastructure” which has the ability to integrate the entire web of information 
flows from sensors to actuators, in a vast distributed web of computations, which is capable over time to 
learn to optimize the performance of the actual physical infrastructure which the cyberinfrastructure 
controls.  DARPA has used the expression “end-to-end learning” to describe this. Yet this is precisely the 
same design task we have been addressing all along, motivated by Figure 1! Perhaps we need to replace the 
word “reinforcement” by the word “current performance evaluation” or the like, but the actual 
mathematical task is the same. 
 Many of the specific computing applications that we might be interested in working on can best be 
seen as part of a larger computational task, such as the tasks depicted in figure 1 or figure 2. These tasks 
can provide a kind of integrating framework for a general purpose software package – or even for a hybrid 
system composed of hardware and software together. See www.eng.nsf.gov/ecs for a link to some recent 
NSF discussions of cyberinfrastructure. 
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Figure 3. Where did ANNs and Backpropagation Come From? 
 
Figure 3 summarizes the origins of backpropagation and of Artificial Neural Networks (ANNs). The figure 
is simplified, but even so, one could write an entire book to explain fully what is here. 
 Within the ANN field proper, it is generally well-known that backpropagation was first spelled out 
explicitly (and implemented) in my 1974 Harvard PhD thesis[1]. (For example, the IEEE Neural Network 
Society cited this in granting me their Pioneer Award in 1994.) 
 Many people assume that I developed backpropagation as an answer to Marvin Minsky’s classic 
book Perceptrons [13]. In that book, Minsky addressed the challenge of how to train a specific type of 
ANN – the Multilayer Perceptron (MLP) – to perform a task which we now call Supervised Learning, 
illustrated in Figure 4.  



Figure 4. What a Supervised Learning System (SLS) Does 
 
In supervised learning, we try to learn the nonlinear mapping from an input vector X to an output vector Y, 
when given examples {X(t), Y(t), t=1 to T} of the relationship. There are many varieties of supervised 
learning, and it remains a large and complex area of ANN research to this day, with links to statistics, 
machine learning, data mining, and so on.  
 Minsky’s book was best known for arguing that (1) we need to use an MLP with a hidden layer 
even to represent simple nonlinear functions such as the XOR mapping; and (2) no one on earth had found 
a viable way to train MLPs with hidden layers good enough even to learn such simple functions. Minsky’s 
book convinced most of the world that neural networks were a discredited dead-end – the worst kind of 
heresy. Widrow has stressed that this pessimism, which squashed the early “perceptron” school of AI, 
should not really be blamed on Minsky. Minsky was merely summarizing the experience of hundreds of 
sincere researchers who had tried to find good ways to train MLPs, to no avail. There had been islands of 
hope, such as the algorithm which Rosenblatt called “backpropagation” (not at all the same as what we now 
call backpropagation!), and Amari’s brief suggestion that we might consider least squares as a way to train 
neural networks (without a discussion of how to get the derivatives, and with a warning that he did not 
expect much from the approach). But the pessimism at that time became terminal. 
 In the early 1970s, I did in fact visit Minsky at MIT. I proposed that we do a joint paper showing 
that MLPs can in fact overcome the earlier problems if (1) the neuron model is slightly modified [4] to be 
differentiable; and (2) the training is done in a way that uses the reverse method, which we now call 
backpropagation [1-2] in the ANN field. But Minsky was not interested [14]. In fact, no one at MIT or 
Harvard or any place else I could find was interested at the time. 
 There were people at Harvard and MIT then who had used, in control theory, a method very 
similar to the first-generation adjoint method, where calculations are carried out backwards from time T to 
T-1 to T-2 and so on, but where derivative calculations at any time are based on classical forwards 
methods. (In [1], I discussed first-generation work by Jacobsen and Mayne[15], by Bryson and Ho[16], and 
by Kashyap, which was particularly relevant to my larger goals.) Some later debunkers have in fact argued 
that backpropagation was essentially a trivial and obvious extension of that earlier work. But in fact, some 
of the people doing that work actually controlled computer resources at Harvard and MIT at that time, and 
would not allow those resources to be used to test the ability of true backpropagation to train ANNs for 
supervised learning; they did believe there was enough evidence in 1971 that true backpropagation could 
possibly work.  
 In actuality,  the challenge of supervised learning was not what really brought me to develop 
backpropagation. That was a later development. My initial goal was to develop a kind of universal neural 
network learning device to perform a kind of “Reinforcement Learning” (RL) illustrated in Figure 5. 
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Figure 5. A Concept of Reinforcement Learning. Note that the environment and the RLS 
 are both assumed to have memory at time t of the previous time t-1, and that  

the goal of the RLS is to learn how to maximize the sum of expected U (<U>) over all future time t. 
 
Ironically, my efforts here were inspired in part by an earlier paper of Minsky [17], where he proposed 
reinforcement learning as a pathway to true general-purpose AI. Early efforts to build general-purpose RL 
systems were no more successful than early efforts to train MLPs for supervised learning, but in 1968 [18] I 
proposed what was then a new approach to  reinforcement learning. Because the goal of RL is to maximize 
the sum of <U> over future time, I proposed that we build systems explicitly designed to learn an 
approximation to dynamic programming, the only exact and efficient method to solve such an optimization 
problem in the general case. The key concepts of classical dynamic programming are shown in Figure 6. 
 In classical dynamic programming, the user supplies the utility function to be maximized (this 
time as a function of the state x(t)!) and a stochastic model of the environment used to compute the 
expectation values indicated by angle brackets in the equation. The mathematician then finds the function J 
which solves the equation shown in Figure 6, a form of the Bellman equation. The key theorem is that 
(under the right conditions) any system which chooses u(t) to solve the simple, static maximization 
problem within that equation will automatically provide the optimal strategy over time to solve the difficult 
problem in optimization over infinite time. See [9,19,20] for more complete discussions, including 
discussion of key concepts and notation in figures 6 and 7. 
 

Figure 6. The key concepts in classical dynamic programming 
 
My key idea was to use a universal function approximator – like a neural network – to approximate the 
function J or something very similar to it, in order to overcome the curse of dimensionality which keeps 
classical dynamic programming from being useful on large problems.  
 In 1968, I proposed that we somehow imitate Freud’s concept of a backwards flow of credit 
assignment, flowing back from neuron to neuron, in order to implement this idea. I did not really provide a 
practical way to do this, but in my thesis proposal to Harvard in 1972, I proposed the following design, 
including the flow chart (with less modern labels) and the specific equations for how to use the reverse 
method to calculate the required derivatives indicated by the dashed lines: 
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Figure 7. RLS design proposed to Harvard in my 1972 thesis proposal 
 
I explained the reverse calculations using a combination of intuition and examples and the ordinary chain 
rule, though it was almost exactly a translation into mathematics of things that Freud had previously 
proposed in his theory of psychodynamics! Because of my difficulties in finding support for this kind of 
work, I printed up many copies of this thesis proposal and distributed them very widely. 
 In Figure 3, all three boxes were assumed to be filled in with ANNs – with ordered computational 
systems containing parameters or weights that would be adapted so as to approximate the behavior called 
for by the Bellman equation. For example, in order to make the actions u(t) actually perform the 
maximization which appears in the Bellman equation, we needed to know the derivatives of J with respect 
to every action variable (actually, every parameter in the action network). The derivatives would provide a 
kind of specific feedback to each parameter, to signal whether the parameter should be increased or 
decreased. For this reason, I called the reverse method “dynamic feedback” in [1]. The reverse method was 
needed to compute all the derivatives of J with respect to all of the parameters of the action network in just 
one sweep through the system. At that time, I focused on the case where the utility function U depends only 
on the state x, and not on the current actions u. I discussed how the reverse calculations could be 
implemented in a local way, in a distributed system of computing hardware like the brain.  
 Harvard responded as follows to this proposal and to later discussions. First, they would not allow 
ANNs as such to be a major part of the thesis, since I had not found anyone willing to act as a mentor for 
that part. (I put a few words into chapter 5 to specify essential ideas, but no more.) Second, they said that 
backwards differentiation was important enough by itself for a PhD thesis, and that I should postpone the 
reinforcement learning concepts for research after the PhD. Third, they had some skepticism about reverse 
differentiation itself, and they wanted a really solid, clear, rigorous proof of its validity in the general case. 
Fourth, they agreed that this would be enough to qualify for a PhD if, in addition, I could show that the use 
of the reverse method would allow me to use more sophisticated time-series prediction methods which, in 
turn, would lead to the first successful implementation of Karl Deutsch’s model of nationalism and social 
communications [21]. All of this happened [1], and is a natural lead-in to the next section. 
 The computer work in [1] was funded by the Harvard-MIT Cambridge Project, funded by 
DARPA. The specific multivariate statistical tool described in [1], made possible by backpropagation, was 
included as a general command in the MIT version of the TSP package in 1973-74 and, of course, 
described in the MIT documentation. The TSP system also included a kind of small compiler to convert 
user-specified formulas into Polish form for use in nonlinear regression. By mid-1974 we had almost 
finished coding a new set of commands (almost exactly paralleling [1]) which: (1) would allow a TSP user 
to specify a “model” as a set of user-specified formulas; (2) would consolidate all the Polish forms into a 
single compact structure; (3) would provide the obvious kinds of capabilities for testing a whole model, 
similar to capabilities in Troll; and (4) would automatically create a reverse code for use in prediction and 
optimization over time. The complete system in FORTRAN was almost ready for testing in mid-1974, but 
there was a complete reorganization of the Cambridge Project that summer, reflecting new inputs from 
DOD and important improvements in coding standards based on PL/1. As I result, I graduated and moved 
on before the code could be moved into the new system. 



 
3 Types of Differentiation Capability We Have Developed 
 
3.1 Initial (1974) Version of the Reverse Method 
 
My thesis showed how to calculate all the derivatives of a single computed quantity Y with respect to all of 
the inputs and parameters which fed into that computation in just one sweep backwards through the system. 
See Figure 8. 
 
 
 
 
 
 
 
 
 
 

Figure 8. Concept of the Reverse Method 
 
The first version of the reverse method required that the computational system be what I called an “ordered 
system.” My definition of an “ordered system” in chapter 2 of [1] was almost identical to the definition of 
an explicit computational algorithm given by Louis Rall in his chapter in this book. At each time when we 
compute the scalar result Y, we need to be able to specify a sequence of intermediate computations f1 
through fN which lead up to Y=fN+1, where each computation is specified as a differentiable (and hopefully 
simple) function of what preceded it. In practice, these computations may form a kind of lattice of 
computations performed in parallel. However, that is just a useful and important special case of the general 
mathematics.  
 In order to specify and prove the validity of the reverse method, in the general case, I needed to 
define the concept of an ordered derivative. As shown in Figure 8, the reverse method calculates the entire 
set of ordered derivatives of Y with respect to the set of inputs x1 through xn. 
 Many people at AD2004 asked how the reverse method could be better taught in schools. I would 
propose that the very first course in calculus that teaches partial derivatives should teach that there are at 
least three different types of partial derivative. The three different types make different assumptions, and 
need to be treated as distinct cases with distinct rules, in order to avoid confusion in the practical use of 
partial derivatives. I have seen enough confusion about partial derivatives in the study of complex systems, 
all across social sciences and basic science and engineering, that I believe it would save a lot of time in the 
end to be clear about these distinctions from the first. 
 The three basic concepts are: (1) the algebraic partial derivative, whose value (as an algebraic 
expression) depends on the explicit algebraic expression for the quantity being differentiated; (2) the field 
or functional partial derivative, whose value is well-defined only for a specific set of coordinate variables 
or input vector; and (3) the ordered derivative, which represents the total change in a later quantity which 
results when the value of an earlier quantity is changed, in an ordered system. Ordered derivatives occur in 
practice across all fields of science, but a confusing multitude of ad hoc terms and partial methods have 
been developed to deal with them. Again, it would save time to deal with the concept in a more unified and 
general way in basic calculus courses.  
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Figure 9. The Chain Rule for Ordered derivatives 
 
Figure 9 illustrates the relation between direct or algebraic partial derivatives and ordered derivatives, and 
gives the chain rule for ordered derivatives. In my view, the chain rule for ordered derivatives should be 
taught in second-year calculus classes. The proof of the chain rule in chapter 2 of [1] (reprinted in [6]) is 
the proof of the validity of the reverse method. The reverse method is the use of this chain rule for the case 
of ordered systems. Notice that the direct or algebraic derivative of z3 with respect to z1 is only 4, because 
that is the direct impact along the outer arrow; however the total or ordered derivative is 7.  
 For a system with n inputs as in Figure 8, the reverse method allows one to compute all the 
required derivatives exactly in 1 pass, instead of the n passes needed with older methods. Thus it reduces 
costs by a factor of n. The person funding my work in the late 1970s argued that reductions in 
computational cost were growing less and less important, as computer costs fell. I replied that greater 
computing capacity is properly leading us to build ever larger models and modeling systems and control 
systems; thus as n grows larger and larger, the cost reduction becomes more and more important. For 
systems as large as the brain, the cost reduction is indispensable. The work presented in Wunsch’s chapter 
of this book, applying the reverse method to a large climate models, now gives a good example of that.  
 
3.2 Extensions of the Reverse Method (1974-86) 
 
During 1974-1986, I developed three kinds of extension to the reverse method: (1) extensions to calculate 
derivatives through “recurrent” or “implicit” systems; (2) extensions to calculate selected higher-order 
derivatives or even derivatives of eigenvalues or eigenvectors; and (3) extensions to manage block 
structured or modular computer systems. I used and published the method in several specialized areas – but 
interest became much broader after a detailed 1980 DOE/EIA Validation Report summarizing their 
capabilities and a condensed summary [4] which we distributed very widely  
 
3.2.1 Recurrent or Implicit Systems 
 
The neural network community talks a lot about “feedforward networks,” which sound identical at first to 
“ordered systems.” A feedforward network would contain N elementary processing elements or “neurons,” 
like the functions fk above. At each time, the network would take n inputs (as in Figure 8) and work 
forward step by step to compute its outputs. There may be more than one output, but still it is an ordered 
system. Neural network people often picture such a network as a kind of computational graph made up of 
circles and arrows (for example, see [4] or www.nd.com). Each circle represents the calculation of an 
intermediate variable, and the arrows flowing into any circle show us which earlier results are directly used 
in that calculation. 
 A “recurrent network,” in neural network language, is a network which cannot be ordered, because 
the graph contains arrows “pointing backwards” (or looping back to the same level they start in.) The idea 
of recurrent or recursive neural networks was known back in Minsky’s time[13]. The commonest form of 
recurrence is a loop from neuron number k back to itself. 
 The literature on recurrent networks has become very confused and often inaccurate, in part 
because there are different interpretations of what it means when people insert a backwards arrow into the 
computational graph. There are three common versions of what a backwards loop might mean: (1) a time-
lagged flow of information – for example, when the calculation of neuron k at time t depends on the 
previous output at time t-1 of the same neuron; (2) an instantaneous flow of information, such that the 
network must be interpreted as an implicit system, as a system of nonlinear simultaneous equations such 
that the output of the system is defined as the result of solving those equations; or (3) a flow of information 
in continuous time, governed by ordinary differential equations (ODE). 
 I have defined a Time-Lagged Recurrent Network (TLRN) as a feedforward system augmented by 
the first kind of recurrence. I have defined a Simultaneous Recurrent Network (SRN) as a feedforward 



system augmented by the second kind of recurrence. The most general case, for systems based on discrete 
time, is a hybrid TLRN/SRN, where both kinds of recurrence are present. I have worked at times with the 
ODE versions [7], but at the present time this usually causes more trouble than it is worth (except in certain 
stability proofs in control [20]). The current lack of reliable software to handle TLRN/SRN hybrids 
effectively is a major barrier to progress in making better use of ANNs, in my view. Time-lagged 
recurrence and simultaneous recurrence each provide fundamentally different kinds of modeling or 
computational capability. For maximum (brain-like) overall capability, it is essential to be able to combine 
these two capabilities without blurring the distinction between them. 
 In actuality, TLRNs are still ordered systems, if one considers the entire web of calculations across 
time. In later years, I defined the term “backpropagation through time”(BPTT) [3] to refer to the use of 
backpropagation across an ordered space-time system. Of course, the cost of a complete and exact 
backwards sweep to get all the derivatives is still of the same order as the cost of a forwards sweep. BPTT 
was implemented in [1], and numerous examples were given of ways to use it. TLRNs trained using BPTT, 
along with sophisticated ways of using the derivatives, are the core of some of the most powerful 
applications of ANNs today. For example, the work by Feldkamp, Prokhorov, and others at Ford Research 
contains many examples of the effective use of TLRNs.  
 True implicit systems are a more difficult case. Perhaps the easiest way to think about implicit 
systems is to use the definition of SRN given in section 3.2.4 of [19], with minor revision. An SRN may be 
defined as a vector-valued mapping F: 

),( WXFY =      (1) 
defined as the result of applying a “read-out function” g: 

),,( )( WXygY ∞=     (2) 

to the converged value y(∞) of a vector y which we update by some iteration rule: 

),,( )()1( WXyfy nn =+
  ,  (3) 

where f is a feedforward system, and W is a set of weights or parameters, together with some procedure for 
determining the initial iterate y(0). I sometimes call f the “feedforward core” of the SRN. 
 In 1980, soon after starting work for the Office of Energy Information Validation at the Energy 
Information Administration (EIA) of the Department of Energy, I encountered two examples of such 
implicit systems: (1) an econometric model of the natural gas industry [7], which included time-lagged 
effects but was defined as a simultaneous-equation system, like most standard econometric models; and (2) 
the Long-Term Energy Analysis Package (LEAP)[5], which was a large simultaneous-equation system 
operating forwards and backwards through time. I had responsibility for managing two large contracts 
which included sensitivity analysis of such models, one at MIT [26] (for econometric models) and one at 
Oak Ridge National Laboratories (ORNL) evaluating LEAP. 
 The ORNL group had studied the best current literature on the first-generation adjoint sensitivity 
methods, some of which they forwarded to me. Extending that approach, they calculated “sensitivity 
coefficients” (ordered derivatives) for LEAP, by calculating the Jacobian of f, in effect, and iterating over 
the gradient of equation 3.  
 Looking at this work, I realized immediately that I could combine their approach to addressing the 
simultaneous equations aspect, together with the use of the reverse method applied to the feedforward core 
in order to avoid Jacobian calculations, and together with BPTT to handle the time-lagged effects in a 
normal econometric model. I implemented this new unified method as follows. First, I translated the 
current EIA model of natural gas markets and natural gas regulation from FORTRAN into a model in the 
Troll system.  (This took some time, but was much appreciated by EIA management, because it made it 
much easier for them to know precisely what was assumed inside this model.) Then I hand-coded the dual 
or adjoint code to go with the model, as another “model” in Troll, so that I could quickly compute the 
sensitivity of any model result to all of the many inputs and parameters of the system. The results were 
written up in an EIA report “published” as an energy validation report, distributed within DOE and ORNL 
and a few other places, and theoretically distributed to the general public. The resulting journal article [7] 
was delayed due to the (verified) finding that the predicted residential gas price could vary by $1 or more, 
in response to changes of only .001 in one of the elasticity parameters. The group which I managed at 
ORNL soon after became a primary source for the second-generation adjoint sensitivity methods. The 
person I exchanged papers with the most in this group retired after making a large amount of money on the 
stock market, using neural network methods to guide his investments. 



 The method described in the final section of [7] is very close to the “white box method for implicit 
systems” as now used in the AD community. The presentation of the method in chapters 3 and 10 of [19] 
may be somewhat easier to work with than [7]. 
 SRNs are not widely used yet in ANN technology, even though many important applications will 
require them for real success. Part of the problem is a lack of suitable software and a need for research into 
how to speed up the learning. (Kozma, Rilin, and I have recently had preliminary results cutting learning 
time by a factor of ten, compared with [22,23], using the simplest partial version of some new approaches.)  
Another part of the problem is a widespread lack of understanding of what SRNs can offer, if properly 
trained. 
 Most ANN users know that simple MLPs are “universal approximators.” Andrew Barron of Yale 
[24] has proven theorems about how many parameters are needed to achieve a given level of 
approximation accuracy, when approximating smooth functions. In essence, he has proven that the required 
complexity grows exponentially with the number of inputs for linear basis function approximators (such as 
lookup tables, Taylor series, or radial basis function approximators). However, it grows much more slowly 
for the simple MLP. Many neural network people conclude: if MLPs are so effective in approximating any 
input-output mapping, why bother with the extra complexity of an SRN? 
 However, many tasks critical to intelligent systems require that we approximate nonsmooth 
functions or functions with high computational complexity. Minsky’s “connectedness” function [13] is one 
example. Evaluating a position in a game like Go is another example. The SRN provides a kind of Turing-
like capability [19] that ensures it has the most general kind of representation ability we need in practice, 
and we often do need it. 
 To try to demonstrate this, Pang and I [22,23] showed how a simple SRN could learn to solve a 
kind of “generalized maze navigation” task, where MLPs and the Simple Recurrent Networks later 
proposed by psychologists both failed very badly. In [23] I showed how an SRN trained on 6 easy mazes 
could steadily improve its performance on 6 hard mazes on which it was never trained. In [22], we 
exhaustively discussed the 5 major approaches to computing the derivatives needed to train an SRN 
structure (4 applicable to TLRNs as well). We actually used the “black box” approach in this early 
demonstration. The black box approach – treating the iterations of equation 3 as if they were time points, 
and using BPTT – takes more memory than the “white box” approach, but it was simple and exact, and did 
not lead into the tricky pitfalls of the white box method discussed at AD 2004.  
 In the work of [22,23], we used a special kind of SRN, a “cellular SRN,” suitable for situations 
where the inputs come from a kind of two-dimensional grid with translational symmetry. More recently I 
have developed and patented a more general special case of SRN, called an ObjectNet, for situations where 
the inputs may come from a more general class of relational networks (such as the state of electric power 
grids). ObjectNets can be used to train a single network to learn from a training set consisting of data from 
different power grids with different topologies and different numbers of state variables – and yet they are 
still an inherently distributed computational structure, like the cellular SRN. 
 One may also ask: how could the brain calculate the derivatives it needs to train time-lagged 
recurrences, since it cannot memorize its entire life history as one time series, and it does not seem to 
sweep back through time in the same way that BPTT does? In [19,22], we describe an approach to 
approximating the required derivatives in forwards time, called the “Error Critic.” Also, when systems need 
to learn over very long time intervals T, there may be a close relation between the kinds of multi-scale time 
representation we need for intelligent control [25] and the kind we need for memory management or 
“checkpointing.” As a simple example, if T=2n, we could live with only n “memory records” in an exact 
BPTT, by allocating one record to hold T/2, one to hold 3T/4 initially but later T/4, and so on, in a scheme 
similar to binary search. The brain may not be so limited in its memory capacity, but the organization of its 
information may lead to some interesting parallels.  
 
3.2.2 Modular Structure, Higher-Order Derivatives and Eigenvalues 
 
Up to now, I discussed how to calculate the ordered first derivatives of a scalar quantity of interest Y as 
depicted in Figure 8, for systems which are ordered (section 3.1) or recurrent (3.2.1). But what if the system 
of interest has more than one output of interest? What if we need higher-order derivatives? For reasons of 
space, I cannot present all the extensions I have worked with, but I can give some examples and citations.  
 First consider the example of Figure 4. A supervised learning system usually has several outputs 



Y1 through Yn, forming a vector Y. How can we apply the capability shown in Figure 8 where there is only 
a single output of interest? 
 The SLS shown in Figure 8 may be a neural network or any other system which may be 
represented by a vector-valued function F: 

    )),(()(ˆ WtXFtY =   ,    (4) 

where W represents the set {Wα} of weights or parameters to be adapted. There are many ways to adapt 
such systems. In “vanilla backpropagation” or in “basic backpropagation” [2,3] in real-time, we adapt the 
weights Wα so as to reduce the square error of the prediction of Y(t) at the current time 
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For truly brain-like capability, it is very important to modify this approach by adding penalty terms (e.g. 
like those of Phatak), and by accounting for the related issues addressed by various authors involving loss 
functions[26], robustness[27], empirical risk [28] or dynamic robustness [1,19,29] and by allowing for a 
kind of interplay between learning from current experience and learning from memory as in what I have 
called syncretism [19], which is related to Atkeson’s memory-based learning.   
 In basic backpropagation, the scalar quantity of interest is E(t). The system to be differentiated is 
not the SLS itself but the combination of the SLS and equation 5. Thus we can apply the reverse method 
directly. As a practical matter, it is important to write clean modular code here. Modular code becomes ever 
more important as we work our way up to more complex applications.  
 In writing modular code, we would like to use a name for each variable as close as possible to the 
label we use in the mathematical papers that describe the system, but computer languages will not let us use 
“∂+E(t)/∂Wα”, for example, as a variable name. Thus I have used the shorthand notation “F_Wα”, for 
example, to represent the feedback to the quantity Wα, the ordered derivative of the current quantity of 
interest with respect to Wα. (In the AD community, people might use “ad_Wα” instead.)  
 For developing a modular version of basic backpropagation [3], I have shown how the reverse 
calculations can be split up into two parts. The first part, in the main program, calculates: 
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for i = 1 to n. Then a dual subroutine, a dual or adjoint to the SLS, works back the implied ordered 
derivatives with respect to all of the inputs or weights. (To minimize run costs, we may sometimes code 
two versions or entries to the dual subroutine, one of which only calculates feedback to the weights, for 
cases where that is all we need.) The dual subroutine inputs the entire set of F_Y variables, but it 
implements a single reverse calculation aimed at a single scalar quantity of interest further downstream. 
 Only about 12 people have fully implemented structures like Figure 7 so far, because it requires us 
to keep track of three main scalar quantities of interest, the specific error measure used in training the 
Critic, the error measure used in training the Model, and the estimate of J itself as used to train the Action 
network. People who use off-the-shelf neural network software without really understanding the reverse 
method find it difficult to keep track of the complexity. Often I explain the system by discussing how to 
adapt the three parts in three separate sections, so that I discuss only one error measure in each section. 
Many other explanations, examples, and applications appear in [9]. In my parts of [19], I give the more 
general case more explicitly, by using dual subroutines in the specification of algorithms, so that a user can 
select any mixture of neural networks, elastic fuzzy logic, or user-specified systems of equations for any of 
the components. I have sometimes wondered whether I should use notation like FJ_Wα, FEJ_Wα and 
FEX_Wα to explicitly describe how systems like Figure 7 require us to consider three quantities of interest 
at the same time. In 1986 [30], I described some early ideas for how one might implement capabilities like 
this as a user-friendly systems of commands in the SAS system. There are tutorial slides with text which 
progress from simple pattern recognition and data mining methods, through to diagnostics and time-series 
issues, through to many generations and types of methods for decision and control [31]. 

Chapter 10 of [19] discusses the issues which arise when we try to train “Models” (as in Figure 7) 
which can predict partially observed systems over time, and chapter 13 discusses a stochastic extension (the 
“Stochastic Encoder/Decoder/Predictor”) which may be thought of as a kind of nonlinear maximum 
likelihood factor analysis system in the special case where the Predictor is set to zero. Backwards 
differentiation is essential to making these kinds of complex capabilities workable in realistic computing 



systems or in realistic chip-level or distributed hardware implementations. Jose Principe at the University 
of Florida (http://www.ece.ufl.edu/facultystaff/principe.html) also has interesting ideas. Feldkamp and 
Prokhorov of Ford recently did benchmark studies where even simple TLRNs performed state estimation as 
well as more expensive “particle filter” methods and better than Extended Kalman Filters. Still, more work 
is needed to unify the pieces needed when unobserved variables are partly continuous and partly discrete. 
 As a further example, people sometimes use supervised learning to learn nonlinear relationships in 
a statistical way from real observed data, but supervised learning can also be useful as a way to develop a 
kind of reduced order model of a more complex model. For example, one may use it to approximate a large 
model running on a supercomputer by a neural network model which could fit on the $1-10 neural chip 
designed and tested by Raoul Tawel of the Jet Propulsion Laboratory and Mosaix LLC (funded by an NSF 
SBIR grant with encouragement from Ford). In such cases, however, you can get better results by 
developing an adjoint for the large model as well, so that the training set includes  X(t), Y(t), and the 
Jacobian of Y(t) with respect to X(t) for each example t. You can minimize the augmented error function: 
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where the input vector X has m components, and the nonnegative weights Cj can be chosen in various 
ways.  
I have called this method “Gradient Assisted Learning” (GAL). To minimize this error function, one must 
in effect calculate its derivatives, which involve ordered second derivatives. Chapter 10 of [19] discusses 
how to do so in some detail. (See also [32].) The easiest general approach is simply to note that the 
calculation of E(t) is itself an ordered system, even though some of its intermediate calculations are 
motivated by derivative calculation. One can apply the reverse method directly to that ordered system. 
Similar issues arise in implementing a control method which I call Globalized Dual Heuristic Programming 
(GDHP), where I discussed (less clearly) how to get the second derivatives [4,33,34]. GDHP now seems 
most important as a way to handle decision or control problems where the actions u(t) include both discrete 
and continuous choices[9]. See [20] for some discussion of stability theory and links to control theory. 
 Sensitivity analysis and convergence of large models was a major application when I was at EIA, 
calling for many kinds of derivatives for many uses. See [4] and [5] for examples.  For example, combining 
the reverse method with the Fadeev formulas for derivatives of eigenvalues and eigenvectors yielded 
interesting information. All of the methods here can provide important practical information in global 
modeling packages, such as one would use for long-range strategic planning where it is important to know 
the impact of current decisions or policies on long-term global outcomes, and to generate value measures or 
“shadow prices” to guide optimal decisions by tactical or distributed agents.  
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